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A B S T R A C T

The average power of rhythmic neural responses as captured by MEG/EEG/LFP recordings is a prevalent index of
human brain function. Increasing evidence questions the utility of trial-/group averaged power estimates how-
ever, as seemingly sustained activity patterns may be brought about by time-varying transient signals in each
single trial. Hence, it is crucial to accurately describe the duration and power of rhythmic and arrhythmic neural
responses on the single trial-level. However, it is less clear how well this can be achieved in empirical MEG/EEG/
LFP recordings. Here, we extend an existing rhythm detection algorithm (extended Better OSCillation detection:
“eBOSC”; cf. Whitten et al., 2011) to systematically investigate boundary conditions for estimating neural rhythms
at the single-trial level. Using simulations as well as resting and task-based EEG recordings from a micro-
longitudinal assessment, we show that alpha rhythms can be successfully captured in single trials with high
specificity, but that the quality of single-trial estimates varies greatly between subjects. Despite those signal-to-
noise-based limitations, we highlight the utility and potential of rhythm detection with multiple proof-of-
concept examples, and discuss implications for single-trial analyses of neural rhythms in electrophysiological
recordings. Using an applied example of working memory retention, rhythm detection indicated load-related
increases in the duration of frontal theta and posterior alpha rhythms, in addition to a frequency decrease of
frontal theta rhythms that was observed exclusively through amplification of rhythmic amplitudes.

1. Introduction

1.1. Towards a single-trial characterization of neural rhythms

Episodes of rhythmic neural activity in electrophysiological recordings
are of prime interest for research on neural representations and compu-
tations across multiple scales of measurement (e.g. Buzs"aki, 2006; Wang,
2010). At the macroscopic level, the study of rhythmic neural signals has a
long heritage, dating back to Hans Berger’s classic investigations into the
Alpha rhythm (Berger, 1938). Since then, advances in recording and
processing techniques have facilitated large-scale spectral analysis schemes
(e.g. Gross, 2014) that were not available to the pioneers of electrophysi-
ological research, who often depended on the manual analysis of single
time series to indicate the presence and magnitude of rhythmic events.
Interestingly, improvements in analytic methods still do not capture all of
the information that can be extracted by manual inspection. For example,
current analysis techniques are largely naïve to the specific temporal
presence of rhythms in the continuous recordings, as they often employ

windowing of condition- or group-based averages to extract putative
rhythm-related characteristics (Cohen, 2014). However, the underlying
assumption of stationary, sustained rhythms within the temporal window
of interest might not consistently be met (Jones, 2016; Stokes and Spaak,
2016), thus challenging the appropriateness of the averaging model (i.e.,
the ergodicity assumption (Molenaar and Campbell, 2009)). Furthermore,
in certain situations, single-trial characterizations become necessary to
derive unbiased individual estimates of neural rhythms (Cohen, 2017). For
example, this issue becomes important when asking whether rhythms
appear in transient or in sustained form (van Ede et al., 2018), or when
only single-shot acquisitions are feasible (i.e., resting state or sleep
recordings).

1.2. Duration as a powerful index of rhythmicity

The presence of rhythmicity is a necessary prerequisite for the accu-
rate interpretation of measures of amplitude, power, and phase (Aru
et al., 2015; Jones, 2016; Muthukumaraswamy and Singh, 2011). This is
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exemplified by the bias that arrhythmic periods exert on rhythmic power
estimates. Most current time-frequency decomposition methods of
neurophysiological signals (such as the electroencephalogram (EEG)) are
based on the Fourier transform (Gross, 2014). Following Parceval’s
theorem (e.g. Hansen, 2014), the Fast Fourier Transform (FFT) de-
composes an arbitrary time series into a sum of sinusoids at different
frequencies. Importantly, FFT-derived power estimates do not differen-
tiate between high-amplitude transients and low-amplitude sustained
signals. In the case of FFT power, this is a direct result of the violated
assumption of stationarity in the presence of a transient signal.
Short-time FFT and wavelet techniques alleviate (but do not eliminate)
this problem by analyzing shorter epochs, during which stationarity is
more likely to be obtained. However, whenever spectral power is aver-
aged across these episodes, both high-amplitude rhythmic and
low-amplitude arrhythmic signal components may once again become
intermixed. In the presence of arrhythmic content (often referred to as
the “signal background,” or “noise”), this results in a reduced amplitude
estimate of the underlying rhythm, the extent of which relates to the
duration of the rhythmic episode relative to the length of the analysed
segment (which we will refer to as ‘abundance’) (see Fig. 1A). Therefore,
integration across epochs that contain a mixture of rhythmic and
arrhythmic signals results in an inherent ambiguity between the strength
of the rhythmic activity (as indexed by power/amplitude) and its dura-
tion (as indexed by the abundance of the rhythmic episode within the
segment) (see Fig. 2B).

Crucially, the strength and duration of rhythmic activity theoretically
differ in their neurophysiological interpretation. Rhythmic power most
readily indexes the magnitude of synchronized changes in membrane
potentials within a network (Buzs"aki et al., 2012), and is thus related to
the size of the participating neural population. The duration of a rhyth-
mic episode, by contrast, tracks how long population synchrony is up-
held. Notably, measures of rhythm duration have recently gained interest
as they may provide additional information regarding the biophysical
mechanisms that give rise to the recorded signals (Peterson and Voytek,
2017; Sherman et al., 2016), for example, by differentiating between
transient and sustained rhythmic events (van Ede et al., 2018).

1.3. Single-trial rhythm detection as a methodological challenge

In general, the accurate estimation of process parameters depends on
a sufficiently strong signal in the neurophysiological recordings under
investigation. Especially for scalp-level M/EEG recordings it remains
elusive whether neural rhythms are sufficiently strong to be clearly
detected in single trials. Here, a large neural population has to be syn-
chronously active to give rise to potentials that are visible at the scalp
surface. This problem intensifies further by signal attenuation through
the skull (in the case of EEG) and the superposition of signals from
diverse sources of no interest both in- and outside the brain (Schomer &
Lopes da Silva, 2017). In sum, these considerations lead to the proposal
that the signal-to-noise ratio (SNR), here operationally defined as the
ratio of rhythmic to arrhythmic variance, may fundamentally constrain
the accurate characterization of single-trial rhythms.

Following those considerations, we set out to answer the following
hypotheses and questions: (1) A precise differentiation between rhythmic
and arrhythmic timepoints can disambiguate the strength and the dura-
tion of rhythmicity. (2) To what extent does the single-trial rhythm
representation in empirical data allow for an accurate estimation of
rhythmic strength and duration in the face of variations in the signal-to-
noise ratio of rhythmicity? (3) What are the empirical benefits of sepa-
rating rhythmic (and arrhythmic) duration and power?

Recently, the Better OSCillation Detection (BOSC; Caplan et al., 2001;
Whitten et al., 2011) method has been proposed to identify rhythmicity
at the single-trial level. BOSC defines rhythmicity based on the presence
of a spectral peak that is superimposed on an arrhythmic 1/f background
and that remains present for a minimum number of cycles. Here, we
extend the BOSC method (i.e., extended BOSC; eBOSC) to derive

rhythmic temporal episodes that can be used to further characterize
rhythmicity. Using simulations, we derive rhythm detection benchmarks
and probe the boundary conditions for unbiased rhythm indices.
Furthermore, we apply the eBOSC algorithm to resting- and task-state
data from a micro-longitudinal dataset to systematically investigate the
feasibility to derive reliable and valid indices of neural rhythmicity from
single-trial scalp EEG data and to probe their modulation by working
memory load.

We focus on alpha rhythms (~8–15 Hz; defined here based on indi-
vidual FFT-peaks) due to (a) their high amplitude in human EEG re-
cordings, (b) the previous focus on the alpha band in the rhythm
detection literature (Caplan et al., 2015; Fransen et al., 2015; Whitten
et al., 2011), and (c) their importance for human cognition (Grandy et al.,
2013a; Klimesch, 2012; Sadaghiani and Kleinschmidt, 2016). We present
examples beyond the alpha range to highlight the ability to apply eBOSC
in multiple, diverse frequency ranges.

2. Methods

2.1. Study design

Resting state and task data were collected in the context of a larger
assessment, consisting of eight sessions in which an adapted Sternberg
short-termmemory task (Sternberg, 1966) and three additional cognitive
tasks were repeatedly administered. Resting state data are from the first
session, task data are from sessions one, seven and eight, during which
EEG data were acquired. Sessions one through seven were completed on
consecutive days (excluding Sundays) with session seven completed
seven days after session one by all but one participant (eight days due to a
two-day break). Session eight was conducted approximately one week
after session seven (M¼ 7.3 days, SD¼ 1.4) to estimate the stability of
the behavioral practice effects. The reported EEG sessions lasted
approximately three and a half to 4 h, including approximately one and a
half hours of EEG preparation. For further details on the study protocol
and results of the behavioural tasks see (Grandy et al., 2017).

2.2. Participants

The sample contained 32 young adults (mean age¼ 23.3 years,
SD¼ 2.0, range 19.6–26.8 years; 17 women; 28 university students)
recruited from the participant database of the Max Planck Institute for
Human Development, Berlin, Germany (MPIB). Participants were right-
handed, as assessed with a modified version of the Edinburgh Handed-
ness Inventory (Oldfield, 1971), and had normal or corrected-to-normal
vision, as assessed with the Freiburg Visual Acuity test (Bach, 1996,
2007). Participants reported to be in good health with no known history
of neurological or psychiatric incidences and were paid for their partic-
ipation (8.08 € per hour, 25.00 € for completing the study within 16 days,
and a performance-dependent bonus of 28.00 €; see below). All partici-
pants gave written informed consent according to the institutional
guidelines of the ethics committee of the MPIB, which approved the
study.

2.3. Procedure

Participants were seated at a distance of 80 cm in front of a 60 Hz LCD
monitor in an acoustically and electrically shielded chamber. A resting
state assessment was conducted prior to the initial performance of the
adapted Sternberg task. Two resting state periods were used: the first
encompassed a duration of 2min of continuous eyes open (EO1) and eyes
closed (EC1) periods, respectively; the second resting state was
comprised of two 80 s runs, totalling 16 repetitions of 5 s interleaved eyes
open (EO2) – eyes closed (EC2) periods. An auditory beep indicated to
the subjects when to open and close their eyes.

Following the resting assessments, participants performed an adapted
version of the Sternberg task. Digits were presented in white on a black
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background and subtended ~2.5" of visual angle in the vertical and
~1.8" of visual angle in the horizontal direction. Stimulus presentation
and recording of behavioral responses were controlled with E-Prime 2.0
(Psychology Software Tools, Inc., Pittsburgh, PA, USA). The task design
followed the original report (Sternberg, 1966). Participants started each
trial by pressing the left and right response key with their respective
index fingers to ensure correct finger placement and to enable fast
responding. An instruction to blink was given, followed by the sequential
presentation of 2, 4 or 6 digits from zero to nine. On each trial, the
memory set size (i.e., load) varied randomly between trials, and partic-
ipants were not informed about the upcoming condition. Also, the single
digits constituting a given memory set were randomly selected in each
trial. Each stimulus was presented for 200ms, followed by a fixed
1000ms blank inter-stimulus interval (ISI). The offset of the last stimulus
coincided with the onset of a 3000ms blank retention interval, which
concluded with the presentation of a probe item that was either con-
tained in the presented stimulus set (positive probe) or not (negative probe).
Probe presentation lasted 200ms, followed by a blank screen for
2000ms, during which the participant’s response was recorded. A beep
tone indicated the end of the trial. The task lasted about 50min.

For each combination of load x probe type, 31 trials were conducted,
cumulating in 186 trials per session. Combinations were randomly
distributed across four blocks (block one: 48 trials; blocks two through
four: 46 trials). Summary feedback of the overall mean RT and accuracy
within the current session was shown at the end of each block. At the
beginning of session one, 24 practice trials were conducted to familiarize
participants with the varying set sizes and probe types. To sustain high

motivation throughout the study, participants were paid a 28 € bonus if
their current session’s mean RT was faster or equal to the overall mean
RT during the preceding session, while sustaining accuracy above 90%.
Only correct trials were included in the analyses.

2.4. EEG recordings and pre-processing

EEG was continuously recorded from 64 Ag/AgCl electrodes using
BrainAmp amplifiers (Brain Products GmbH, Gilching, Germany). Sixty
scalp electrodes were arranged within an elastic cap (EASYCAP GmbH,
Herrsching, Germany) according to the 10% system (cf. Oostenveld et al.,
2011) with the ground placed at AFz. To monitor eye movements, two
electrodes were placed on the outer canthi (horizontal EOG) and one
electrode below the left eye (vertical EOG). During recording, all elec-
trodes were referenced to the right mastoid electrode, while the left
mastoid electrode was recorded as an additional channel. Prior to
recording, electrode impedances were retained below 5 kΩ. Online, sig-
nals were recorded with an analog pass-band of 0.1–250Hz and digitized
at a sampling rate of 1 kHz.

Preprocessing and analysis of EEG data were conducted with the
FieldTrip toolbox (Oostenveld et al., 2011) and using custom-written
MATLAB (The MathWorks Inc., Natick, MA, USA) code. Offline, EEG
data were filtered using a 4th order Butterworth filter with a pass-band of
0.5–100 Hz, and were linearly detrended. Resting data with interleaved
eye closure were epoched relative to the auditory cue to open and close
the eyes. An epoch of # 2 s to þ 3 s relative to on- and offsets was chosen
to include padding for the analysis. During the eBOSC procedure, 3 s of

Fig. 1. Schematic illustration of rhythm detection. (A) Average amplitude estimates (right) increase with the focus on rhythmic episodes within the averaged time
interval. The left plots show simulated time series and the corresponding time-frequency power. Superimposed red traces indicate rhythmic time points. The upper
right plot shows the average power spectrum averaged across the entire epoch, the lower plot presents amplitudes averaged exclusively across rhythmic time points.
An amplitude gain is observed due to the exclusion of arrhythmic low amplitude time points. (B–E) Comparison of standard and extended BOSC. (B þ C) Rhythms were
detected based on a power threshold estimated from the arrhythmic background spectrum. Standard BOSC applies a linear fit in log-log space to define the background
power, which may overestimate the background at the frequencies of interest in the case of data with large rhythmic peaks. Robust regression following peak removal
alleviates this problem. (D) Example of episode detection. White borders circumfuse time frequency points, at which standard BOSC indicated rhythmic content. Red
traces represent the continuous rhythmic episodes that result from the extended post-processing. (E) Applied thresholds and detected rhythmic abundance. The black
border denotes the duration threshold at each frequency (corresponding to D), i.e., for how long the power threshold needed to be exceeded to count as a rhythmic
period. Note that this threshold can be set to zero for a post-hoc characterization of the duration of episodes (see Methods 2.12). The color scaling within the
demarcated area indicates the power threshold at each frequency. Abundance corresponds to the relative length of the segment on the same time scale as presented in
D. White dots correspond to the standard BOSC measure of rhythmic abundance at each frequency (termed Pepisode). Red lines indicate the abundance measure used
here, which is defined as the proportion of sample points at which a rhythmic episode between 8 and 15 Hz was indicated (shown as red traces in D).
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signal were removed from both edges (see below), resulting in an
effective epoch of 4 s duration that excludes evoked components
following the cue onset. Continuous eyes open/closed recordings were
segmented to the cue on- and offset. For the interleaved data, the first and
last trial for each condition were removed, resulting in an effective trial
number of 14 trials per condition. For the task data, we analysed two
intervals: an extended interval to assess the overall dynamics of detected
rhythmicity and a shorter interval that focused on the retention period.
Unless otherwise noted, we refer to the extended interval when pre-
senting task data. For the extended segments, task data were segmented
to 21 s epochs ranging from # 9 s to þ 12 s with regard to the onset of the
3 s retention interval for analyses including peri-retention data. For an-
alyses including only the retention phase, data were segmented to # 2 s to
þ 3 s around the retention interval. Note that for all analyses, 3 s of signal
were removed on each side of the signal during eBOSC detection,
effectively removing the evoked cue activity (2 s to account for edge
artifacts following wavelet-transformation and 1 s to account for eBOSC’s
duration threshold, see section 2.6), except during the extended task
interval. Hence, detected segments were restricted to occur from 1s after
period onset until period offset, thereby excluding evoked signals. Blink,
movement and heart-beat artifacts were identified using Independent
Component Analysis (ICA; Bell and Sejnowski, 1995) and removed from
the signal. Subsequently, data were downsampled to 250Hz and all
channels were re-referenced to mathematically averaged mastoids.

Artifact-contaminated channels (determined across epochs) were auto-
matically detected (a) using the FASTER algorithm (Nolan et al., 2010)
and (b) by detecting outliers exceeding three standard deviations of the
kurtosis of the distribution of power values in each epoch within low
(0.2–2 Hz) or high (30–100Hz) frequency bands, respectively. Rejected
channels were interpolated using spherical splines (Perrin et al., 1989).
Subsequently, noisy epochs were likewise excluded based on FASTER
and recursive outlier detection, resulting in the rejection of approxi-
mately 13% of trials. To prevent trial rejection due to artifacts outside the
signal of interest, artifact detection was restricted to epochs that included
2.4 s of additional signal around the on- and offset of the retention in-
terval, corresponding to the longest effective segment that was used in
the analyses. A further 2.65% of incorrectly answered trials from the task
were subsequently excluded.

2.5. Rhythm-detection using extended BOSC

We applied an extended version of the Better OSCillation detection
method (eBOSC; cf. Caplan et al., 2001; Whitten et al., 2011) to auto-
matically separate rhythmic from arrhythmic episodes. The BOSC
method reliably identifies rhythms using data-driven thresholds based on
theoretical assumptions of the signal characteristics. Briefly, the method
defines rhythms as time points during which wavelet-derived power at a
particular frequency exceeds a power threshold based on an estimate of the
arrhythmic signal background. The theoretical duration threshold defines
a minimum duration of cycles this power threshold has to be exceeded to
exclude high amplitude transients. Previous applications of the BOSC
method focused on the analysis of resting-state data or long data epochs,
where reliable detection has been established regardless of specific
parameter setups (Caplan et al., 2001, 2015; Whitten et al., 2011). We
introduce the following adaptations here (for details see section 2.6,
Fig. 1 & Fig. S1): (1) we remove the spectral alpha peak and use robust
regression to establish power thresholds; (2) we combine detected time
points into continuous rhythmic episodes and (3) we reduce the impact of
wavelet convolution on abundance estimates. We benchmarked the al-
gorithm and compared it to standard BOSC using simulations (see section
2.8).

2.6. Specifics of rhythm-detection using extended BOSC

Rhythmic events were detected within subjects for each channel and
condition. Time-frequency transformation of single trials was performed
using 6-cycle Morlet wavelets (Grossmann and Morlet, 1985) with 49
logarithmically-spaced center frequencies ranging from 1 to 64 Hz.
Following the wavelet transform, 2 s were removed at each segment’s
borders to exclude edge artifacts. To estimate the background spectrum,
the time-frequency spectra from all trials were temporally concatenated
within condition and channel and log-transformed, followed by temporal
averaging. For eyes-closed and eyes-open resting states, both continuous
and interleaved exemplars were included in the background estimation
for the respective conditions. The resulting power spectrum was fit lin-
early in log(frequency)-log(power) coordinates using a robust regression,
with the underlying assumption that the EEG background spectrum is
characterized by coloured noise of the form A*f̂(# α) (Buzs"aki and Miz-
useki, 2014; He et al., 2010; Linkenkaer-Hansen et al., 2001). A robust
regression with bisquare weighting (e.g. Holland and Welsch, 2007) was
chosen to improve the linear fit of the background spectrum (cf. Haller
et al., 2018), which was characterized by frequency peaks in the alpha
range for almost all subjects (Fig. S4). In contrast to ordinary least
squares regression, robust regression iteratively down-weights outliers
(in this case spectral peaks) from the linear background fit. To improve
the definition of rhythmic power estimates as outliers during the robust
regression, power estimates within the wavelet pass-band around the

Fig. 2. eBOSC disambiguates the magnitude and duration of rhythmic episodes.
(A) Schema of different amplitude metrics. (B) Rhythm-detection disambiguates
rhythmic amplitude and duration. Overall amplitudes represent a mixture of
rhythmic power and duration. In the absence of noise (upper row), eBOSC
perfectly orthogonalizes rhythmic amplitude from abundance. Superimposed
noise leads to an imperfect separation of the two metrics (lower row). The
duration of rhythmicity is similarly indicated by abundance and the overlap
between rhythmic and overall amplitudes. This can be seen by comparing the
two rightmost plots in each row.
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individual alpha peak frequency were removed prior to fitting.1 The
passband of the wavelet (e.g. Linkenkaer-Hansen et al., 2001) was
calculated as

Passband ½Hz& ¼ IAF ' 0:5*
2
WL

*IAF (1)

in which IAF denotes the individual alpha peak frequency and WL refers
to wavelet length (here, six cycles in the main analysis). IAF was deter-
mined based on the peak magnitude within the 8–15Hz average spec-
trum for each channel and condition (Grandy et al., 2013b). This ensures
that the maximum spectral deflection is removed across subjects, even in
cases where no or multiple peaks are present.2 This procedure effectively
removes a bias of the prevalent alpha peak on the arrhythmic background
estimate (see Fig. 1B and C & Fig. 3C). The power threshold for rhyth-
micity at each frequency was set at the 95th percentile of a χ2(2)-distri-
bution of power values, centered on the linearly fitted estimate of
background power at the respective frequency (for details see Whitten
et al., 2011). This essentially implements a significance test of single-trial
power against arrhythmic background power. A three-cycle threshold
was used as the duration threshold to exclude transients, unless indicated
otherwise (see section 2.12). The conjunctive power and duration criteria
produce a binary matrix of ‘detected’ rhythmicity for each
time-frequency point (see Fig. S1C). To account for the duration crite-
rion, 1000 ms were discarded from each edge of this ‘detected’ matrix.

The original BOSC algorithmwas further extended to define rhythmic
events as continuous temporal episodes that allow for an event-wise
assessment of rhythm characteristics (e.g. duration). The following
steps were applied to the binary matrix of ‘detected’ single-trial rhyth-
micity to derive such sparse and continuous episodes. First, to account for
the spectral extension of the wavelet, we selected time-frequency points
with maximal power within the wavelet’s spectral smoothing range (i.e.
the pass-band of the wavelet; 2

WL*frequency; see Formula 1). That is, at
each time point, we selected the frequency with the highest indicated
rhythmicity within each frequency’s pass-band. This served to exclude
super-threshold timepoints that may be accounted for by spectral
smoothing of a rhythm at an adjacent frequency. Note that this effectively
creates a new frequency resolution for the resulting rhythmic episodes,
thus requiring sufficient spectral resolution (defined by the wavelet’s
pass-band) to differentiate simultaneous rhythms occurring at close fre-
quencies. Finally, continuous rhythmic episodes were formed by
temporally connecting extracted time points, while allowing for moment-
to-moment frequency transitions (i.e. within-episode frequency non-

stationarities; Atallah and Scanziani, 2009) (for a single-trial illustra-
tion see Fig. 1D and Fig. S1D).

In addition to the spectral extension of the wavelet, the choice of
wavelet parameter also affects the extent of temporal smoothing, which
may bias rhythmic duration estimates. To decrease such temporal bias,
we compared observed rhythmic amplitudes at each time point within
each rhythmic episode with those expected by smoothing adjacent am-
plitudes using the wavelet (Fig. S1E). By retaining only those time points
where amplitudes exceeded the smoothing-based expectations, we
removed supra-threshold time points that can be explained by temporal
smoothing of nearby rhythms (e.g., ‘ramping’ up and down signals). In
more detail, we simulated the positive cycle of a sine wave at each fre-
quency, zero-shouldered each edge and performed (6-cycle) wavelet
convolution. The resulting amplitude estimates at the zero-padded time
points reflect the temporal smoothing bias of the wavelet on adjacent
arrhythmic time points. This bias is maximal (BiasMax) at the time point
immediately adjacent to the rhythmic on-/offset and decreases with
temporal distance to the rhythm. Within each rhythmic episode, the
‘convolution bias’ of a time-frequency (TF) point’s amplitude on sur-
rounding points was estimated by scaling the points’ amplitude by the
modelled temporal smoothing bias.

AmplitudesF;Tþ 1# L:L# T ¼
!
ðAmplitudeTF # PTFÞ *

BiasVectorF;Tþ 1# L:L# T :

BiasMaxF

"

þ PTF (2)

Subscripts F and T denote frequency and time within each episode,
respectively. BiasVector is a vector with the length of the current episode
(L) that is centered around the current TF-point. It contains the wavelet’s
symmetric convolution bias around BiasMax. Note that both BiasVector
and BiasMax respect the possible frequency variations within an episode
(i.e., they reflect the differences in convolution bias between fre-
quencies). The estimated wavelet bias was then scaled to the amplitude
of the rhythmic signal at the current TF-point. PT refers to the condition-
and frequency-specific power threshold applied during rhythm detection.
We subtracted the power threshold to remove arrhythmic contributions.
This effectively sensitizes the algorithm to near-threshold values,
rendering them more likely to be excluded. Finally, time points with
lower amplitudes than expected by the convolution model were removed
and new rhythmic episodes were created (Fig. S1F). The resulting epi-
sodes were again checked for adhering to the duration threshold.

As an alternative to the temporal wavelet correction based on the
wavelet’s simulated maximum bias (‘MaxBias’; as described above), we
investigated the feasibility of using the wavelet’s full-width half
maximum (‘FWHM’) as a criterion. Within each continuous episode and
for each “rhythmic” sample point, 6-cycle wavelets at the frequency of
the neighbouring points were created and scaled to the point’s ampli-
tude. We then used the amplitude of these wavelets at the FWHM as a
threshold for rhythmic amplitudes. That is, points within a rhythmic
episodes that had amplitudes below those of the scaled wavelets were
defined as arrhythmic. The resulting continuous episodes were again
required to pass the duration threshold. As the FWHM approach indi-
cated decreased specificity of rhythm detection in the simulations
(Fig. S2) we used the ‘MaxBias’ method for our analyses.

Furthermore, we considered a variant where total amplitude values
were used (vs. supra-threshold amplitudes) as the basis for the temporal
wavelet correction. Our results suggest that using supra-threshold power
values leads to a more specific detection at the cost of sensitivity
(Fig. S2). Crucially, this eliminated false alarms and abundance over-
estimation, thus rendering the method highly specific to the occurrence
of rhythmicity. As we regard this as a beneficial feature, we used supra-
threshold amplitudes as the basis for the temporal wavelet correction
throughout the manuscript.

1 This procedure is similar to calculating the background spectrum from
conditions with attenuated alpha power (e.g., the eyes open resting state; Caplan
et al. (2015)). However, here we ensure that alpha power is sufficiently
removed, whereas if conditions with reduced alpha peak magnitudes are
selected, alpha power may still remain sufficiently elevated to influence slope or
intercept estimates. Furthermore, the reliance on conditions with decreased
rhythmicity appears less suitable given inter-individual differences in alpha
engagement in e.g., the eyes open condition. This may induce an implicit
contrast to eyes open rhythmicity. Note that when the frequency range is chosen
so that the alpha peak represents the middle of the chosen interval, the
alpha-induced bias would be captured by a linear increment in the intercept of
the background fit, which may also be alleviated by choosing a higher percentile
for the power threshold. Notably, removing the alpha peak as done here at-
tenuates such bias, even in cases where the alpha peak biases the slope of the
background fit, as would happen if the alpha peak is not centered within the
range of sampled frequencies.
2 When multiple alpha-band peaks are present or the peak has a broader

appearance, the spectral peak may not be removed entirely, which could result
in misfits of the background spectrum. For this purpose, we employed robust
regression to down-weight potential residuals around the alpha peak. Our cur-
rent implementation only accounts for a peak in the alpha range, but could be
extended to other frequency ranges using the same logic (see discussion on
limitations in section 4.6).
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2.7. Definition of abundance, rhythmic probability and amplitude metrics

A central goal of rhythm detection is to disambiguate rhythmic power
and duration (Fig. 2). For this purpose, eBOSC provides multiple indices.
We describe the different indices for the example case of alpha rhythms.
Please note that eBOSC can be applied in a similar fashion to any other
frequency range. The abundance of alpha rhythms denotes the duration
of rhythmic episodes with a mean frequency in the alpha range
(8–15Hz), relative to the duration of the analysed segment. This fre-
quency range was motivated by clear peaks within this range in indi-
vidual resting state spectra (Fig. S4). Note that abundance is closely
related to standard BOSC’s Pepisode metric (Whitten et al., 2011), with
the difference that abundance refers to the duration of the continuous
rhythmic episodes and not the ‘raw’ detected rhythmicity of BOSC (cf.
Figs. S1C and D). We further define rhythmic probability as the across
trials probability to observe a detected rhythmic episode within the alpha
frequency range at a given point in time. It is therefore the within-time,
across-trial equivalent of abundance.

As a result of rhythm detection, the magnitude of spectral events can
be described using multiple metrics (see Fig. 2A for a schematic). Am-
plitudes were calculated as the square-root of wavelet-derived power
estimates and are used interchangeably throughout the manuscript. The
standard measure of window-averaged amplitudes, overall amplitudes
were computed by averaging across the entire segment at its alpha peak
frequency. In contrast, rhythmic amplitudes correspond to the amplitude
estimates during detected rhythmic episodes. If no alpha episode was
indicated, abundance was set to zero, and amplitude was set to missing.
Unless indicated otherwise, both amplitude measures were normalized
by subtracting the amplitude estimate of the fitted background spectrum.
This step represents a parameterization of rhythmic power (cf. Haller
et al., 2018) and is conceptually similar to baseline normalization,
without requiring an explicit baseline segment. This highlights a further
advantage of rhythm-detection procedures like (e)BOSC. In addition, we
calculated an overall signal-to-noise ratio (SNR) as the ratio of the
overall amplitude to the background amplitude: Overall

Background: In addition, we
defined rhythmic SNR as the background-normalized rhythmic ampli-
tude as a proxy for the rhythmic representation: Rhythmic# Background

Background :

Unless stated differently, subject-, and condition-specific amplitude
and abundance values were averaged within and across trials, and across
posterior-occipital channels (P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3,
POz, PO4, PO8, O1, Oz, O2), in which alpha power was maximal (Fig. 4A,
Fig. 8).

2.8. eBOSC validation via alpha rhythm simulations

To assess eBOSC’s detection performance, we simulated 10Hz sine
waves with varying amplitudes (0, 2, 4, 6, 8, 12, 16, 24 [a.u.]) and du-
rations (2, 4, 8, 16, 32, 64, 128, 200 [cycles]) that were symmetrically
centered within random 1/f-filtered white noise signals (20 s; 250 Hz
sampling rate). Amplitudes were scaled relative to the power of the
8–12 Hz 6th order Butterworth-filtered background signal in each trial to
approximate SNRs. To ensure comparability with the empirical analyses,
we computed overall SNR analogously to the empirical data, which
tended to be lower than the target SNR. We chose the maximum across
simulated durations as an upper bound (i.e., conservative estimate) on
overall SNR. For each amplitude-duration combination we simulated 500
“trials”. We assessed three different detection pipelines regarding their
detection efficacy: the standard BOSC algorithm (i.e., linear background
fit incorporating the entire frequency range with no post-editing of the
detected matrix); the eBOSC method using wavelet correction by simu-
lating the maximum bias introduced by the wavelet (“MaxBias); and the
eBOSC method using the full-width-at-half-maximum amplitude for
convolution correction (“FWHM”). The background was estimated
separately for each amplitude-duration combination. 500 edge points
were removed bilaterally following wavelet estimation, 250 additional

samples were removed bilaterally following BOSC detection to account
for the duration threshold, effectively retaining 14 s of simulated signal.

Detection efficacy was indexed by signal detection criteria regarding
the identification of rhythmic time points between 8 and 12Hz (i.e.,
hits¼ simulated and detected points; false alarms¼ detected, but not
simulated points). These measures are presented as ratios to the full
amount of possible points within each category (e.g., hit rate¼ hits/all
simulated time points). For the eBOSC pipelines, abundance was calcu-
lated identically to the analyses of empirical data. As no consecutive
episodes (cf. Pepisode and abundance) are available in standard BOSC,
abundance was defined as the relative amount of time points with
detected rhythmicity between 8 and 12Hz.

A separate simulation aimed at establishing the ability to accurately
recover amplitudes. For this purpose, we simulated a whole-trial alpha
signal (i.e., duration¼ 1) and a quarter-trial alpha signal (duration¼ .25)
with a larger range of amplitudes (1:16 [a.u.]) and performed otherwise
identical procedures as described above. To assess eBOSC’s ability to
disambiguate power and duration (Fig. 2B), we additionally performed
simulations in the absence of noise across a larger range of simulated
amplitudes and durations.

Amajor change in eBOSC compared to standard BOSC is the exclusion
of the rhythmic peak prior to estimating the background. To investigate
to what extent the two methods induce a bias between rhythmicity and
the estimated background magnitude (for a schematic see Fig. 1C and D),
we calculated Pearson correlations between the overall amplitude and
the estimated background amplitude across all levels of simulated am-
plitudes and durations (Fig. 3C).

As the empirical data suggested a trial-wise association between
amplitude and abundance estimates also at high levels of signal-to-noise
ratios (Fig. 7), we investigated whether such associations were also
present in the simulations. For each pair of simulated amplitude and
duration, we calculated Pearson correlations between the overall
amplitude and abundance across single trials. Note that due to the sta-
tionarity of simulated duration, trial-by-trial fluctuations indicate the
bias under fluctuations of the noise background (as amplitudes were
scaled to the background in each trial). For each cell, we performed
Fisher’s r-to-z transform to account for unequal trial sizes due to missing
amplitude/abundance estimates (e.g. when no episodes are detected).

2.9. Calculation of phase-based lagged coherence

To investigate the convergence between the power-based duration
estimate (abundance) and a phase-based alternative (Fransen et al.,
2015), we calculated lagged coherence at 40 linearly scaled frequencies
in the range of 1–40 Hz for each resting-state condition. Lagged coher-
ence assesses the consistency of phase clustering at a single sensor for a
chosen cycle lag (see Fransen et al., 2015 for formulas). Instantaneous
power and phase were estimated via 3-cycle wavelets. Data were
segmented to be identical to eBOSC’s effective interval (i.e., same
removal of signal shoulders as described above). In reference to the
duration threshold for power-based rhythmicity, we calculated the
averaged lagged coherence using two adjacent epochs #a three cycles. We
computed an index of alpha rhythmicity by averaging values across
epochs and posterior-occipital channels, finally extracting the value at
the maximum lagged coherence peak in the 8–15Hz range.

2.10. Dynamics of rhythmic probability and rhythmic power during task
performance

To investigate the detection properties in the task data, we analysed
the temporal dynamics of rhythmic probability and power in the alpha
band. We created time-frequency representations as described in section
2.6 and extracted the alpha peak power time series, separately for each
person, condition, channel and trial. At the single-trial level, values were
allocated to rhythmic vs. arrhythmic time points according to whether a
rhythmic episode with mean frequency in the respective range was
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indicated by eBOSC. These time series were averaged within subject to
create individual averages of rhythm dynamics. Subsequently, we z-
scored the power time series to accentuate signal dynamics and attenuate
between-subject power differences. To highlight global dynamics, these
time series were further averaged within- and between-subjects.
Figure captions indicate which average was used.

2.11. Rhythm-conditional spectra and abundance for multiple canonical
frequencies

To assess the general feasibility of rhythm detection outside the alpha
range, we analysed the retention interval of the adapted Sternberg task,
where the occurrence of theta, alpha and beta rhythms has been reported
in previous studies (Brookes et al., 2011; Jensen et al., 2002; Jokisch and
Jensen, 2007; Lundqvist et al., 2016; Raghavachari et al., 2001; Tuladhar
et al., 2007). For this purpose, we re-segmented the data to cover the final
2 s of the retention interval þ - 3 s of edge signal that was removed during
the eBOSC procedure. We performed eBOSC rhythm detection with
otherwise identical parameters to those described in section 2.6. We then
calculated spectra across those time points where rhythmic episodes with
a mean frequency in the range of interest were indicated, separately for
four frequency ranges: 3–8Hz (theta), 8–15Hz (alpha), 15–25Hz (beta)
and 25–64 Hz (gamma). We subtracted spectra across the remaining
arrhythmic time-points for each range from these ‘rhythm-conditional’
spectra to derive the spectra that are unique to those time points with

rhythmic occurrence in the band of interest. For the corresponding
topographic representations, we calculated the abundance metric as
described in section 2.7 for the apparent peak frequency ranges.

2.12. Post-hoc characterization of sustained rhythms vs. transients

Instead of exclusively relying on a fixed a priori duration threshold as
done in previous applications, eBOSC’s continuous ‘rhythmic episodes’
also allow for a post-hoc separation of rhythms and transients based on
the duration of identified rhythmic episodes. This is afforded by our
extended post-processing that results in a more specific identification of
rhythmic episodes (see Fig. 3) and an estimated length for each episode.
For this analysis (Fig. 10), we set the a priori duration threshold to zero
and separated the resulting episodes post-hoc based on their duration
(shorter vs. longer than 3 cycles) at their mean frequency. That is, any
episode crossing the amplitude threshold was retained and episodes were
sorted by their ‘transient’ or sustained appearance afterwards. We con-
ducted this analysis in the extended task data to illustrate the temporal
dynamics of rhythmic and transient events. To investigate the modula-
tion of rhythm- and transient-specific metrics between the retention
phase and the probe phase, we averaged metrics within these two in-
tervals and performed a paired t-test between the two respective intervals
for four indices: episode number, duration, frequency and power.
Cluster-based permutation tests (Maris and Oostenveld, 2007) as
implemented in FieldTrip were performed to control for multiple

Fig. 3. Rhythm detection performance of standard and extended BOSC in simulations. (A) Signal detection properties of the two algorithms. For short simulated
rhythmicity, abundance is overestimated by standard BOSC, but not eBOSC, whereas eBOSC underestimates the duration of prolonged rhythmicity at low SNRs (A1).
Extended BOSC has decreased sensitivity (A2), but higher specificity (A3) compared with extended BOSC. Note that for simulated zero alpha amplitude, all sample
points constitute potential false alarms, while by definition no sample point constitutes a potential hit. (B) Amplitude and abundance estimate for signals with
sustained (left) and short rhythmicity (right). Black dots indicate reference estimates for a pure sine wave without noise, coloured dots indicate the respective es-
timates for data with the 1/f background. [Note that the reference estimates were interpolated at the empirical abundance of the 1/f data. Gray dots indicate the
perfect abundance estimates in the absence of background noise.] When rhythms are sustained (left), impaired rhythm detection at low SNRs causes an overestimation
of the rhythmic amplitude. At low rhythmic duration (right), this deficit is outweighed by the severe bias of arrhythmic duration on overall amplitude estimates (e.g.,
Fig. 9). Simulated amplitudes (and corresponding empirical SNRs in brackets) are shown on the right. Vertical lines indicate the simulated rhythmic duration. (C)
eBOSC successfully reduces the bias of the rhythmic peak on the estimation of the background amplitude. In comparison, standard BOSC induces a strong coupling
between the peak magnitude and the background estimate. (D) eBOSC indicates abundance more accurately than standard BOSC at high amplitudes (i.e., high SNR;
see also A1). The leftward shift indicates a decrease in sensitivity. Horizontal lines indicate different levels of simulated duration. Dots are single-trial estimates across
levels of simulated amplitude and duration. (E) Standard BOSC and eBOSC induce trial-wise correlations between amplitude and abundance. eBOSC exhibits reduced
trial-by-trial coupling at higher SNR compared to standard BOSC. Values are r-to-z-transformed correlation coefficients.
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comparisons. Initially, a clustering algorithm formed clusters based on
significant t-tests of individual data points (p< .05; cluster entry
threshold) with the spatial constraint of min. three adjacent channels.
Then, the significance of the observed cluster-level statistic, based on the
summed t-values within the cluster, was assessed by comparison to the
distribution of all permutation-based cluster-level statistics. The final
cluster p-value that we report in Figures was assessed as the proportion of
1000 Monte Carlo iterations in which the cluster-level statistic was
exceeded. Cluster significance was indicated by p-values below .025
(two-sided cluster significance threshold).

2.13. Time series representations of detected rhythmic events

To visualize the stereotypic depiction of single-trial rhythmic events,
we extracted the time series during individual rhythmic episodes that
exceeded a post-hoc duration threshold of three cycles. Individual time
series were time-locked to the trough of individual rhythmic episodes
and averaged across episodes (Sherman et al., 2016). To avoid unequal
sample counts at the edges of episodes, we included additional data
padding around the trough prior to averaging. The trough was chosen to
be the local minimum during the spectral episode that was closest to the
maximum power of the wavelet-transformed signal. To better estimate
the local minimum, the time domain signal was low-pass filtered at 25 Hz
for alpha and beta, 10 Hz for theta and high-pass-filtered at 20 Hz for
gamma using a 6th order Butterworth filter. Filters only served the
identification of local minima, whereas unfiltered data were used for
plotting. Averaged event dynamics during the first session were visual-
ized for theta at Fz, alpha at O2, beta at FCz and gamma at Fz. To visu-
alize single-trial time-domain signals, we computed moving averages of
150 trials across rhythmic episodes concatenated across all subjects.

We further assessed a potential load-modulation of the rate of
rhythmic events during working memory retention by counting the
number of individual rhythmic episodes with a mean frequency that fell
in a moving window of 3 adjacent center frequencies. This produced a

channel-by-frequency representation of spectral event rates, which were
the basis for subsequent significance testing using dependent sample
regression t-tests and implemented in permutation tests as described in
section 2.12.

2.14. Modulation of rhythm estimates by working memory load and eye
closure

To assess the sensitivity of rhythm-derived indices to experimental
manipulations, we compared (1) the effect of eye closure (“Berger ef-
fect”) and (2) the effect of working memory load between select rhythm
indices. To compare rhythm-specific results with traditional approaches,
traditional wavelet estimates were derived using identical parameters as
used for eBOSC. We performed confirmatory tests of a parametric in-
crease in posterior alpha power and frontal theta power with memory
load based on previous reports in the literature (Jensen et al., 2002;
Jensen and Tesche, 2002; Jokisch and Jensen, 2007; Meltzer et al., 2008;
Michels et al., 2008; Onton et al., 2005; Scheeringa et al., 2009; Tuladhar
et al., 2007). In addition, we explored a decrease in frontal theta fre-
quency with load. To reduce the amount of statistical contrasts, we
averaged all metrics across sessions before submitting them to statistical
tests. Load effects for within-subject trial averages between load condi-
tions were assessed by means of a dependent sample regression t-test,
implemented within permutation tests (see section 2.12 for details).
Similar cluster-based permutation tests were performed for the effect of
eye closure on rhythmic and arrhythmic amplitudes and abundance using
a paired samples t-test.

Beyond probing effects on each estimate individually, we probed
whether rhythm-specific estimates of duration and magnitude uniquely
captured task effects over and above traditional indices. For this purpose,
we performed post-hoc linear mixed effects analyses, averaging within
the abundance effects clusters. Prior to modelling, values were z-scored
across subjects and conditions. In each model, a rhythm-specific index
(e.g. abundance) served as the dependent variable, while traditional

Fig. 4. Rhythmic alpha abundance and amplitude during rest. (A) eBOSC identifies high occipital alpha abundance and rhythmic amplitude especially during the Eyes
Closed resting state. White asterisks indicate significant decreases for arrhythmic from rhythmic amplitudes (cluster is identical between conditions). Black asterisks
indicate significant increases upon eye closure. (B) Rhythmic amplitude and abundance are inter-individually related during rest (C) The modulation of eye closure has
similar effects on amplitude and abundance. Estimates were extracted from posterior-occipital channels.
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amplitudes served as a fixed dependent variable. Load or eye closure
were modelled as fixed effects with random subject intercepts, assuming
compound symmetry. For the load effect, we assessed uniquely explained
variance with a post-hoc ANOVA, using marginal sums-of-squares (‘Type
III’). Linear mixed effects modelling was performed in R 3.6.1 (R Core
Team, 2019) with the nlme package (Pinheiro et al., 2019).

In addition, we explored effects on theta frequency with cluster-based
permutations. To visualize frequency modulations, we performed a post-
hoc Fast Fourier Transform (FFT) to specifically characterize rhythmic
episodes, while normalizing for their duration. To retain an identical
frequency resolution across episodes, we zero-padded episodes of vari-
able duration to a fixed duration of 2 s. We then computed a discrete-time
Fourier Transform of individual rhythmic episodes: YðkÞ ¼
Pn

j¼1
XðjÞW ðj# 1Þðk# 1Þ

n , where n is the length of the zero-padded time series X

and Wn ¼ eð# 2πiÞ=n, normalized the resulting absolute spectral values by
the length of the rhythmic episode Nrhythmic and calculated the single-
sided amplitude spectrum. This resulted in rhythm-specific amplitude
values with an identical frequency resolution across episodes. In contrast,
to derive rhythm-unspecific FFT amplitude estimates, we included the
entire two-second retention period in the estimation and used the
respective length for normalization, thus resulting in traditional ‘overall’
FFT amplitude estimates that were unspecific to rhythmic occurrence. To
assess, whether a theta frequency modulation would be observed with
traditional FFT spectra, we detected condition-dependent theta fre-
quency peaks. Peaks were defined as frequencies at which the first de-
rivative of the spectrum changed from positive to negative (Grandy et al.,
2013b). In case no peak was identified, the frequency with peak ampli-
tude was selected. Finally, we performed paired-t-tests to estimate po-
tential load effects.

In figures, we display within-subject standard errors (Cousineau,
2005) to highlight condition differences. For these, individual data were
centered by subtracting the subject condition average and adding the
grand condition average to individual within-condition values.

3. Results

3.1. Extended BOSC (eBOSC) increases specificity of rhythm detection

We extended the BOSC rhythm detection method to characterize
rhythmicity at the single-trial level by creating continuous ‘rhythmic
episodes’ (see Fig. 1 & Fig. S1). A central goal of this approach is the
disambiguation of rhythmic power and duration, which can be achieved
perfectly in data without background noise (upper row in Fig. 2B).
However, the addition of 1/f noise reintroduces a partial coupling of the
two parameters (lower row in Fig. 2B). To better understand the
boundary conditions to derive specific amplitude and duration estimates,
we compared the detection properties of the standard and the extended
(eBOSC) pipeline by simulating varying levels of rhythm magnitude and
duration. Considering the sensitivity and specificity of detection, both
pipelines performed adequately at high levels of SNR with high hit and
low false alarm rates (Fig. 3A). However, whereas standard BOSC showed
perfect sensitivity above SNRs of ~4, specificity was lower than for
eBOSC as indicated by higher false alarm rates (grand averages: 0.160 for
standard BOSC; 0.015 for eBOSC). This specificity increase was observed
across simulation parameters, suggesting a general abundance over-
estimation by standard BOSC (see also Fig. 3D). In addition, standard
BOSC did not show a reduced detection of transient rhythms below the
duration threshold of three cycles, whereas hit rates for those transients
were clearly reduced with eBOSC (Fig. 3A2). This suggests that wavelet
convolution extended the effective duration of transient rhythmic epi-
sodes, resulting in an exceedance of the temporal threshold. In contrast,
by creating explicit rhythmic episodes and reducing convolution effects,
eBOSC more strictly adhered to the specified target duration. However,
there was also a notable reduction in sensitivity for rhythms just above

the duration threshold, suggesting a sensitivity-specificity trade-off
(Fig. 3A2). In addition to decreasing false alarms, eBOSC also more
accurately estimated the duration of rhythmicity (Fig. 3A1), although an
underestimation of abundance persisted (and was increased) at low
SNRs. In sum, while eBOSC improved the specificity of identifying
rhythmic content, there were also noticeable decrements in sensitivity
(grand averages: 0.909 for standard BOSC; 0.614 for eBOSC), especially
at low SNRs. Comparable results were obtained with a 3-cycle wavelet
(Fig. S3). Notably, while sensitivity remains an issue, the high specificity
of detection suggests that the estimated rhythmic abundance serves as a
lower bound on the actual duration of rhythmicity.

In a second set of simulations, we considered eBOSC’s potential to
accurately estimate rhythmic amplitudes. As expected, in signals with
stationary rhythms (duration¼ 1), the time-invariant ‘overall’ amplitude
estimate most accurately represented simulated amplitudes (Fig. 3B left),
as any methods-induced underestimation biased rhythm-specific ampli-
tudes. Specifically, at low SNRs, underestimation of rhythmic content
resulted in an overestimation of rhythmic amplitudes, as some low-
amplitude time points were incorrectly excluded prior to averaging. At
those low SNRs, subtraction of the background estimate (cf. baseline
normalization) alleviated this overestimation. The general impairment at
low SNRs was however outweighed by the advantage of rhythm-specific
amplitude estimates in time series where rhythmic duration was low and
thus arrhythmicity was prevalent (Fig. 3B right). Here, rhythm-specific
estimates accurately tracked simulated amplitudes, whereas a strong
underestimation was observed for unspecific power indices. In both
scenarios, we observed an underestimation of rhythmic abundance with
decreasing amplitudes (cf. Fig. 3A1).

An adaptation of the eBOSC method is the exclusion of the rhythmic
alpha peak prior to fitting the arrhythmic background. This serves to
reduce a potential bias of rhythmic content on the estimation of the
arrhythmic content (see Fig. 1C for a schematic). Our simulations indeed
indicated a bias of the spectral peak amplitude on the background esti-
mate in the standard BOSC algorithm, which was substantially reduced in
eBOSC’s estimates (Fig. 3C).

To gain a visual representation of duration estimation performance,
we plotted abundance against amplitude estimates across all simulated
trials, regardless of simulation parameters (Fig. 3D). This revealed mul-
tiple modes of abundance at high amplitude levels, which in the eBOSC
case more closely tracked the simulated duration. This further visualizes
the decreased error in abundance estimates, especially at high SNRs (e.g.,
Fig. 3A), while an observed rightward shift towards higher amplitudes
indicated the more pronounced underestimation of rhythmicity at low
SNRs.

Finally, we investigated the trial-wise association between amplitude
and duration estimate based on the observed coupling in empirical data
(see Fig. 7). Our simulations suggest that both standard BOSC and eBOSC
can induce spurious positive correlations between amplitude and abun-
dance estimates, which are most pronounced at low levels of SNR
(Fig. 3E). Notably, these associations are strongly reduced in eBOSC,
especially when rhythmic power is high. This indicates that eBOSC
provides a better separation between the two (here independent) pa-
rameters, although a spurious association remains.

In sum, our simulations suggest that eBOSC specifically separates
rhythmic and arrhythmic time points in simulated data at the expense of
decreased sensitivity, especially when SNR is low. However, the increase
in specificity is accompanied by an increased accuracy of duration esti-
mates at high SNR, theoretically allowing a more precise investigation of
rhythmic duration.

3.2. eBOSC detects single-trial alpha rhythms during rest and task states

While the simulations provide a gold standard to assess detection
performance, we further probed eBOSC’s detection performance in
empirical data from resting and task states to investigate the practical
feasibility and utility of rhythm detection. As the ground truth in real
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data is unknown, we evaluated detection performance by contrasting
metrics from detected and undetected timepoints regarding their
topography and time course.

Individual power spectra showed clear rhythmic alpha peaks for
every participant during eyes closed rest and for most subjects during
eyes open rest and the task retention period, indicating the general
presence of alpha rhythms during the analysed states (Fig. S4). In line
with a putative source in visual cortex, alpha abundance was highest over
parieto-occipital channels during the resting state (Fig. 4A) and during
the WM retention period (Fig. 8), with high collinearity between abun-
dance and rhythmic amplitudes within resting conditions (Fig. 4B). As
expected, rhythmic time-points exhibited increased alpha power
compared with arrhythmic time points (Fig. 4A; white cluster). As one of
the earliest findings in cognitive electrophysiology (Berger, 1938), alpha
amplitudes increase in magnitude upon eye closure. Here, eye closure
was reflected by a joint shift towards higher amplitudes and durations for
almost all participants (Fig. 4C). To assess unique contributions of the
Berger effect on rhythm indices while controlling for the high collinearity
between indicators, we performed linear mixed modelling within the
common effects cluster (see Supplementary Table 1). We focussed on the
continuous condition here, due to the similarity of the effects in the
interleaved case. Notably, rhythmic abundance was modulated by eye
closure while statistically controlling for either rhythmic or arrhythmic
amplitudes. In contrast, rhythmic alpha amplitudes were not modulated
by eye closure when controlling for alpha abundance. This suggests that
rhythmic duration may be a more sensitive marker of task modulations
than amplitude. Finally, arrhythmic amplitudes did not exhibit the
Berger effect in either the interleaved or the continuous acquisition when
statistically controlling for the collinearity with rhythmic amplitude or
rhythmic abundance. Taken together, these results suggest a high, joint
sensitivity of rhythm-specific indices to eye closure, which exceeded the
residual modulation of arrhythmic backgrounds that may have resulted
from specificity impairments during the original detection procedure.

The temporal dynamics of indicated rhythmicity are another char-
acteristic of interest to indicate successful rhythm detection. While such
an investigation is difficult for induced rhythmicity during rest, evoked
rhythmicity offers an optimal test case due to its systematic temporal
deployment. For this reason, we analysed task recordings with stereo-
typic design-locked alpha power dynamics at encoding, retention and
probe presentation (Fig. 5AB). Rhythmic probability closely tracked
power dynamics (Fig. 5A) and time points designated as rhythmic
exhibited pronounced alpha power compared with those labelled
arrhythmic (Fig. 5A left vs. Fig. 5A right). While rhythm-specific dy-
namics closely captured standard power trajectories, we observed a
dissociation concerning arrhythmic power. Here, we observed transient
increases during stimulus onsets that were absent from either abundance
or rhythmic power (Fig. 5A right). This suggests an increase in high-
power transients that were excluded due to the 3 cycle duration
threshold. Indeed, a significant increase in transient events was observed
without an a priori duration threshold (see Fig. 10).

At the single-trial level, rhythmicity was indicated for periods with
visibly elevated alpha power with strong task-locking (Fig. 5B left).
Conversely, arrhythmicity was indicated for time points with low
alpha power and little structured dynamics (Fig. 5B right). However,
strong inter-individual differences were apparent, with little detected
rhythmicity when global alpha power was low (Fig. 5B bottom; plots
are sorted by descending power as indicated by the frame colour of the
depicted subjects and scaled using z-scores to account for global power
differences). Crucially, those subjects’ single-trial power dynamics did
not present a clear temporal structure, suggesting a prevalence of noise
and therefore a correct rejection of rhythmicity. Notably, those indi-
vidual rhythmicity estimates were stable across multiple sessions
(Fig. 5C), suggesting that they are indicative of trait-like characteris-
tics rather than idiosyncratic measurement noise (Grandy et al.,
2013a,b).

In sum, these results suggest that eBOSC successfully separates

rhythmic and arrhythmic episodes in empirical data, both at the group
and individual level. However, they also indicate prevalent and stable
differences in single-trial rhythmicity in the alpha band that may impair
an accurate detection of rhythmic episodes.

3.3. Rhythmic SNR constrains empirical duration estimates and rhythm-
related metrics

While the empirical results suggest a successful separation of rhyth-
mic and arrhythmic content at the single-trial level, we also observed
strong (and stable) inter-individual differences in alpha-abundance. This
may imply actual differences in the duration of rhythmic engagement (as
indicated in Fig. 5B). However, we also observed a severe underestima-
tion of abundance as a function of the overall signal-to-noise ratio (SNR)
in simulations (Fig. 3), thus leading to the question whether empirical
data fell into similar ranges where an underestimation was likely. During
the resting state, we indeed observed that many overall SNRs were in the
range, where simulations with a stationary alpha rhythm suggested an
underestimation of abundance (cf. black and blue lines in Fig. 6A. The
black line indicates simulation-based estimates for stationary alpha
rhythms at different overall SNR levels; see section 2.8). Moreover, the
coupling of individual SNR and abundance values took on a deterministic
shape in this range, whereas the association was reduced in ranges where
simulations suggest sufficient SNR for unbiased abundance estimates
(orange line in Fig. 6A). As overall SNR is influenced by the duration of
arrhythmic signal, rhythmic SNRmay serve as an even better predictor of
abundance due to its specific relation to rhythmic episodes (Fig. 2). In
line with this consideration, rhythmic SNR exhibited a strong linear
relationship to abundance (Fig. 6B). Importantly, the background esti-
mate was not consistently related to abundance (Fig. 6C), emphasizing
that it is the ‘signal’ and not the ‘noise’ component of SNR that de-
termines detection. Similar observations were made in the task data
during the retention phase (Fig. S5), suggesting that this association re-
flects a general link between the magnitude of the spectral peak and
duration estimates. The joint analysis of simulated and empirical data
thus questions the accuracy of individual duration estimates, especially
at low SNRs, due to the dependence of unbiased estimates on sufficient
rhythmic power.

As eBOSC defines single-trial power deviations from a stationary
power threshold as a criterion for rhythmicity, it remains unclear
whether this association is exclusive to such a ‘power thresholding’-
approach or whether it constitutes a more general feature of single-trial
rhythmicity. To probe this question, we calculated a phase-based mea-
sure of rhythmicity, termed ‘lagged coherence’ (Fransen et al., 2015),
which assesses the stability of phase clustering at a single sensor for a
chosen cycle lag. Here, 3 cycles were chosen for comparability with
eBOSC’s duration threshold. Crucially, this definition of rhythmicity led
to highly concordant estimates with eBOSC’s abundance measure3

(Fig. 6D), suggesting that power-based rhythm detection above the
scale-free background overlaps to a large extent with the rhythmic in-
formation captured in the phase-based lagged-coherence measure.
Moreover, it suggests that duration estimates are more generally coupled
to rhythmic amplitudes, especially when overall SNR is low.

While the previous observations were made at the between-subjects
level, we further investigated whether such coupling also persists be-
tween trials in the absence of between-person differences. In the present
data, we indeed observed a positive coupling of trial-wise fluctuations of
rhythmic SNR and abundance (mean Fisher’s z: 0.60; p< 6.5e-19)

3 The eBOSC duration measure was further strongly correlated with the
traditional Pepisode measure (estimated at the trial-wise IAF) that results from
the standard BOSC algorithm (EC: r ¼ .96, p¼ 2e-18; EC2: r ¼ .94, p¼ 2e-15;
EO: r ¼ .97, p¼ 3e-20; EO2: r ¼ .97, p¼ 2e-20), suggesting that both measures
are similarly sensitive in our empirical data and reflect to a large extent over-
lapping information.
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(Fig. 7A), whereas the estimate of the scale-free background was less
consistently, though significantly (mean Fisher’s z: 0.20; p¼ 2.6e-6),
related to the estimated duration of rhythmicity (Fig. 7B). This suggests
that the level of estimated abundance primarily relates to the magnitude
of ongoing power fluctuations around the stationary power threshold.
Fig. 7C schematically shows how such an amplitude-abundance coupling

may be reflected in single trials as a function of rhythmic SNR. These
relationships were also observed in our simulations and in other fre-
quency bands, although they were reduced in magnitude at higher levels
of simulated empirical SNR (Fig. 3E) and for other frequencies (Fig. S6),
suggesting that partial dissociations of the two parameters are feasible.

In sum, these results strongly caution against the interpretation of

Fig. 5. Detected rhythmicity follows the structure of a working memory task, with stable inter-individual differences in single trial detection. (A) Average alpha power
(black), split by rhythmic vs. arrhythmic designation, and rhythmic probability (red) at posterior-occipital channels exhibit stereotypic temporal dynamics during
encoding (gray bars), retention (0–3 s) and retrieval (black bars). Compared to rhythmic power, arrhythmic power exhibits similar temporal dynamics, but is strongly
reduced in power (see y-scales). The arrhythmic power dynamics are characterized by additional transient increases following stimulus presentations. Data are from
the first session and the high load condition. Shading indicates standard errors across subjects. (B) Task-related alpha dynamics are captured by eBOSC at the single-
trial level. Each box displays individual trial-wise z-standardized alpha power at the individual peak frequency, separately for rhythmic (left) and non-rhythmic (right)
time points. While rhythmic time points (left) exhibit clear single-trial power increases that are locked to the task design, arrhythmic time points (right) do not show
evoked task dynamics that separate them from the background, hence suggesting an accurate rejection of rhythmicity. The subplots’ frame colour indicates the
subjects’ raw power maximum (i.e., the data scaling). Data are from channel O2 during the first session across load conditions. (C) Individual abundance estimates are
stable across sessions. Data were averaged across posterior-occipital channels and high (i.e., 6) item load trials.
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duration measures as a ‘pure’ duration metric that is independent from
rhythmic power, especially at low levels of SNR. The strong within-
subject coupling may however also indicate an intrinsic coupling be-
tween the strength and duration of neural synchrony as joint represen-
tations of a rhythmic mode. Notably, covariations were not constrained
to amplitude and abundance, but were widespread, including co-
variations between ‘SNR’ and the instability (or variability) of the indi-
vidual alpha peak frequency (see Supplementary Materials; Fig. S7).
Combined, these results suggest that the efficacy of an accurate single-
trial characterization of neural rhythms relies on sufficient individual
rhythmicity and can not only constrain the validity of duration estimates,
but broadly affect a range of rhythm characteristics that can be inferred
from single trials.

3.4. Rhythm detection improves amplitude estimates by removing
arrhythmic episodes

From the joint assessment of detection performance in simulated and
empirical data, it follows that low SNR constitutes a severe challenge for
single-trial rhythm characterization. However, while the magnitude of

rhythmicity at the single trial level constrains the detectability of
rhythms, abundance represents a lower bound on rhythmic duration due
to eBOSC’s high specificity. This allows the interpretation of rhythm-
related metrics for those time points where rhythmicity is indicated,
leading to tangible benefits over standard analyses. In this section, we
highlight multiple proof-of-concept cases of such benefits.

A considerable problem in standard narrowband power analyses is
the superposition of rhythmicity on top of a scale-free 1/f background,
effectively mixing the two components in traditional power estimates
(e.g. Haller et al., 2018). In contrast, eBOSC uncouples the two signals via
explicit modelling of the arrhythmic background. Fig. 8 presents a
comparison between the standard narrowband estimate and eBOSC’s
background and rhythmicity metrics for the alpha band during working
memory retention. While high narrowband power is observed in frontal
and parietal clusters, eBOSC differentiated a frontally-dominated 1/f
component and a posterior-occipital rhythm cluster. Identical compari-
sons within multiple low-frequency ranges suggest the separation of a
stationary 1/f topography and spatially varying superpositions of
rhythmicity (Fig. S8). This highlights a successful separation of the
scale-free slope magnitude from rhythmicity across multiple frequencies,

Fig. 6. Inter-individual alpha abundance is strongly associated with rhythmic, but not arrhythmic power and may be underestimated at low rhythmic SNR. (A)
Individual abundance estimates are strongly related to the overall SNR of the spectral alpha peak. This relationship is also observed when only considering individual
data within the SNR range for which simulation analyses indicated an unbiased abundance estimation. The black line indicates interpolated estimates from simulation
analyses with a sustained rhythm (i.e., duration¼ 1; see Fig. 3B left). Hence, it indicates a lower bound for the abundance underestimation that occurs at low SNRs,
with notable overlap with the empirical estimates in the same SNR range. (B) The effective rhythmic signal can be conceptualized as the background-normalized
rhythmic amplitude above the background estimate (rhythmic SNR). This proxy for signal clarity is inter-individually linked to abundance estimates. (C) Back-
ground estimates are not consistently related to abundance. This implies that the relationship between amplitude and abundance is mainly driven by the signal, but not
background amplitude (i.e., the effective signal ‘clarity’) and that associations do not arise from a misfit of the background. (D) Rhythmicity estimates translate
between power- and phase-based definition of rhythmicity. This indicates that the BOSC-detected rhythmic spectral peak above the 1/f spectrum contains the
rhythmic information that is captured by phase-based duration estimates. All data are from the resting state.

J.Q. Kosciessa et al. NeuroImage 206 (2020) 116331

12



even when topographies are partially overlapping as in the case of theta.
Furthermore, the presence of a rhythm is a fundamental assumption

for the interpretation of rhythm-related metrics, e.g., phase (Aru et al.,
2015). This is often verified by observing a spectral peak at the frequency
of interest. However, sparse single-trial rhythmicity may not produce an
overt peak in the average spectrum due to the high prevalence of
low-power arrhythmic content. Crucially, knowledge about the temporal
occurrence of rhythms in the ongoing signal can be used to investigate
the spectral content that is specific to those time points, thereby creating
‘rhythm-conditional spectra’. Fig. 9A highlights that such
rhythm-conditional spectra can recover spectral peaks for multiple ca-
nonical frequency bands, even when no clear peak is observed in the
grand average spectrum. This showcases that a focus on detected
rhythmic time points allows the interpretation of rhythm-related pa-
rameters. Abundance topographies for the different peaks observed in the
rhythm-conditional spectra, were in line with the canonical separation of
these frequencies in the literature (Fig. 9B). Notably, while some rhyth-
micity was identified in higher frequency ranges, the associated abun-
dance topographies suggests a muscular generator rather than a neural
origin for these events.

Related to the recovery of spectral amplitudes from ‘overall ampli-
tudes’, a central prediction of the present work was that the change from
overall to rhythmic amplitudes (i.e., rhythm-specific gain; see Fig. 2 for a
schematic) scales with the presence of arrhythmic signal. Stated differ-
ently, if most of the overall signal is rhythmic, the difference between
overall and rhythm-specific amplitude estimates should be minimal.
Conversely, if the overall signal consists largely of arrhythmic periods,
rhythm-specific amplitude estimates should strongly increase from their
unspecific counterparts. In line with these expectations, we observed a
positive, highly linear, relationship between a subject’s estimated dura-
tion of arrhythmicity and the rhythm-specific amplitude gain (Fig. 9C).
Thus, for subjects with sparse rhythmicity, rhythm-specific amplitudes
were strongly increased from overall amplitudes, whereas differences
were minute for subjects with prolonged rhythmicity. Note however that
in the case of inter-individual collinearity of amplitude and abundance
(as observed in the present data) the rhythm-specific gains are unlikely to
change the rank-order of subjects as the relative gain will not only be
proportional to the abundance, but due to the collinearity also to the
original amplitude. While such collinearity was high in the alpha band,
decreased amplitude-abundance relationships were observed for other
canonical frequency bands (Fig. S6), where such ‘amplitude recovery’
may have the most immediate benefits.

To assess whether these single-trial amplitude estimates validly re-
flected fluctuations in time series magnitude, we performed a triadic split

based on single-trial amplitude estimates across all detected episodes
(across channels and sessions) in the alpha band. We aligned time-series
representations of rhythmicity to the maximal negative peak and
compared power in a window of 200ms around this peak. Notably,
rhythm-specific amplitude estimates reflected time series amplitudes
during rhythmic periods (Fig. 9D) with a larger effect size (medium vs.
small: p¼ 4e-7, Cohen’s d¼ 1.13, large vs. medium: p¼ 4e-9; Cohen’s
d¼ 1.42) than overall amplitudes (medium vs. small: p¼ .002, Cohen’s
d ¼ .58, large vs. medium: p¼ 9e-7; Cohen’s d¼ 1.08). Interestingly,
despite collinearity between amplitude and abundance at the within-
subject level (Fig. 7A), a triadic split based on single-trial abundance
estimates did not differentiate rhythmic amplitudes (medium vs. small:
p¼ .34, Cohen’s d ¼ .17, large vs. medium: p¼ .45; Cohen’s d¼ -.14).
Hence, rhythm-specific amplitude estimates were better predictors of
time series amplitudes than traditional averages that included
arrhythmic episodes or estimates of rhythmic duration.

In sum, eBOSC provides sensible single-trial amplitude estimates of
narrow-band rhythmicity that are boosted in magnitude due to the
removal of arrhythmic episodes.

3.5. eBOSC separates sustained and transient spectral events

In addition to specificity gains for rhythmic indices, eBOSC’s creation
of temporally contiguous rhythmic ‘episodes’ affords a characterization
of rhythmic and transient episodes with significant spectral power in the
absence of an a priori duration requirement. Using the traditional 3-cycle
threshold as a post-hoc criterion for detected episodes, we separated
rhythmic and transient spectral events with clear differences in their
time-domain representations (Fig. 10A). Notably, while rhythmic SNR
related to the number of detected rhythmic events, the same was not
observed for the number of transient episodes (Fig. 10B2), thus indi-
cating that rhythms and transients may arise from different mechanisms.
In line with the observations made for rhythmic vs. arrhythmic power (cf.
Fig. 5A), we observed differences in the temporal prevalence of transient
events and sustained rhythms. Specifically, stimulus onsets increased the
number of transient events (Fig. 10A1), whereas sustained rhythms were
increased during the retention phase. These episodes can be further
characterized in terms of their duration in cycles (Fig. 10A2), their mean
frequency (Fig. 10A3) and event-specific power (Fig. 10A4). During the
retention phase, we observed an increased number of larger and longer
rhythms compared with the probe period with no apparent differences in
frequency. In contrast, we observed a global increase in the number of
transients during probe presentation, with those transients being of
higher frequency compared to transients during the retention phase. The

Fig. 7. The magnitude and duration of single-trial rhythmicity are intra-individually associated. Amplitude-abundance association within subjects in the Sternberg
task (1st session, all trials). Dots represent single trial estimates, color-coded by subject. Subject means are presented via diamonds. (Inlay) Histogram of within-subject
Fisher’s z-coefficients of within-subject associations. Relationships are exclusively positive. (B) Background estimates are inter-individually uncorrelated with single-
trial abundance fluctuations, excluding the outlier indicated by white edges. (C) Schematic of the potential interdependence of rhythmic SNR and abundance. Low
SNR may cause the detection of shorter supra-threshold power periods with constrained amplitude ranges, whereas prolonged periods may exceed the stationary
threshold when the rhythmic signal is clearly separated from the background.
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Fig. 8. eBOSC differentiates spatially varying topographies of rhythmic and arrhythmic power during working memory retention. Asterisks mark the channels that
were selected for the spectra on the right. The graph shading depicts standard errors. The topographies are grand averages from the retention phase of the Sternberg
task across all sessions.

Fig. 9. Time-wise indication of rhythmicity improves rhythmic amplitude estimates and produces rhythm-conditional spectra. (A) Comparison of rhythm-conditional
spectra with the standard overall spectrum during the memory retention phase. Rhythm-conditional spectra are created by comparing spectra from time-points where
a rhythm in the respective frequency range has been indicated with those where no rhythm was present. Notably, this indicates rhythmic peaks at the frequencies of
interest that are not observed in the overall spectrum (e.g. theta, beta) due to the prevalence of non-rhythmic events. Simultaneous peaks beyond the target frequencies
indicate cross-spectral coupling. Note that these spectra also suggest sub-clusters of frequencies (e.g. an apparent split of the ‘theta-conditional’ spectrum into a
putative delta and theta component). Data are averaged across sessions, loads, subjects and channels. (B) Abundance topographies of the observed rhythm-conditional
spectral peaks. (C) Arrhythmic duration linearly biases traditional power estimates during both rest and task states. The relative gain in alpha amplitudes from global
intervals to eBOSC’s rhythmic periods (see schematic in Fig. 1A and 2A) increases with the arrhythmic duration in the investigated period. That is, if high arrhythmic
duration was indicated, a focus on rhythmic periods strongly increased amplitudes by excluding the pervasive low-amplitude arrhythmic periods. In contrast,
amplitude estimates were similar when arrhythmicity was low and hence rhythm-unspecific metrics contained little arrhythmic bias. Dots represent individual
condition averages during the resting state. Amplitude gain is calculated as the relative change in rhythmic amplitude from the unspecific ‘overall’ amplitude (i.e.,
(rhythmic amplitude-overall amplitude)/rhythmic amplitude). (D) Rhythmic amplitudes reflect variations in time series amplitude, here visualized via a triadic split.
The inset shows the statistical comparison of squared amplitudes in a 200 ms peri-peak window. Estimates are from Session 1 with data from all channels. *** ¼ p
< .001.
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magnitude and duration of transients did not differ globally between
these two task periods. Taken together, these analyses suggest a princi-
pled separation of sustained and transient spectral events on the bases of
temporal post-hoc thresholds.

Finally, the temporal specificity of spectral episodes also enables a
characterization of rhythm-‘evoked’ events (see Supplementary Mate-
rials). Whereas an assessment of evoked effects has thus far only been
possible with regard to external event markers, the indication of rhythm
on- and offsets allows an investigation of concurrent changes that are
time-locked to rhythmic events (Fig. S9A). Here, we exemplarily show
that the on- and offsets of rhythmic episodes are associated with con-
current power increases and decreases respectively (Fig. S9B), adding
further evidence for the high temporal specificity of indicated on- and
offsets of rhythmic episodes.

In sum, these proof-of-concept applications suggest that explicit
rhythm detection may provide tangible benefits over traditional

narrowband analyses due to the specific separation of rhythmic and
arrhythmic periods, despite the high collinearity of abundance and
power that we observed in the alpha band.

3.6. Rhythm-specific indices exhibit improved sensitivity to working
memory load

So far, we investigated the potential to derive rhythm-specific esti-
mates and highlighted resulting benefits. It remains unclear however, to
what extent these estimates are experimentally modulated in cognitive
tasks and whether they add complementary information to extant mea-
sures. To attend this question, we probed the effect of working memory
load on traditional, rhythm-unspecific power averages and eBOSC’s

Fig. 10. eBOSC provides a varied characterization of duration-specific frequency content, separating sustained rhythmicity from transients. Episodes with a mean
frequency between 8 and 15 Hz were post-hoc sorted by falling below or above a 3-cycle duration threshold. For each index, estimates were averaged across all
episodes at any time point, followed by averaging across subjects and sessions. All indices are based on episodes that fulfil the power threshold for rhythmicity. (A)
Time-domain representation of alpha rhythms (A1) and transients (A2) during retention and probe respectively. Backgrounds display moving averages of 150 raw
rhythmic episode time series across all subjects. Events are aligned to the closest trough to the TFR maximum of the identified event. Episodes are sorted by episode
onset relative to the identified trough. Individual (yellow) and grand data averages (red) are superimposed. (B) Rhythmic SNR linearly relates to the number of
rhythmic events during retention, but not transient events during probe presentation. (C) Rhythm- and transient-specific estimates of episode prevalence (C1),
duration (C2), frequency (C3) and power (C4). Central panels show time-channel representations of group indices for rhythmic (left) and transient episodes (right).
Lateral topographies indicate the corresponding statistical comparisons of paired t-tests comparing the retention and the probe period. Asterisks signify significant
electrode clusters. Unbroken white lines indicate stimulus presentations, broken white lines indicate probe presentation.
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duration and amplitude in the alpha and theta band.4 Standard power
estimates indicated load-related increases in frontal theta and right
posterior alpha power that did not reach statistical significance however
(Fig. 11A; see also Fig. S10 for different normalization procedures). In
contrast, significant increases were observed for rhythmic abundance
(Fig. 11B), but not for rhythm-specific power, despite similar statistical
topographies (Fig. 11C). To investigate whether rhythmic abundance
captured additional variance of memory load compared to amplitude, we
performed linear mixed effects modeling of data averages within the
(topographically-similar) abundance clusters. The results are presented
in Supplementary Table 2. As expected, we observed high collinearity
between different measures, expressed as significant pairwise relations
between traditional and rhythm-specific indices. Controlling for this high
collinearity however, memory load predicted increases in theta and
alpha abundance over and above overall, and rhythmic-specific, ampli-
tudes. In contrast, rhythm-specific amplitudes did not capture unique
variance in load level when controlling for overall amplitude, in line with
the absence of an indicated effect by the permutation test. Jointly, these
analyses suggest that rhythmic abundance, despite high collinearity with
overall and rhythmic amplitudes, is more sensitive to working memory
load than (traditional) amplitude estimates.

The previous analyses focused on the total rhythmic abundance and
power during the retention phase. However, rhythmicity can also be
characterized with regard to individual spectral events, such as their rate
of occurrence. In line with our observation of high abundance, rhythmic
events in the alpha band were characterized by enduring rhythmicity,
whereas events in other frequency bands had a more transient signature
(Fig. 12A). This poses the question whether the rate of these transient
events may be a critical parameter, as has been previously suggested for
the beta and gamma band (Lundqvist et al., 2016; Shin et al., 2017). To
attend this question, we created rate spectra based on the occurrence of
rhythmic episodes in sliding frequency windows. These spectra were
then subjected to a cluster-based permutation test to assess their relation
with memory load. We observed increased rates of frontal theta and
posterior gamma events as well as decreased rates of central beta events
with load, whereas no differences were indicated for the alpha band
(Fig. 12B). Hence, whereas the sustained appearance of alpha rhythms
may render other parameters such as duration and power critical, in
other frequency bands, modulation may also affect the number of rela-
tively sparse events.

In turn, focusing on these sparse rhythmic events can drastically in-
crease their amplitude estimates and may thus improve dependent
metrics (e.g., see Fig. 9C). During our exploration of rhythmic parame-
ters, we observed a parametric load-related decrease of frontal theta
frequency (Fig. 12C) that spatially aligned with the frontal topography of
theta rate and abundance increases (see Figs. 12B & 11B). Individual
rhythmic frequency decreases between low and high loads were not
related to individual abundance (r ¼ .33, p¼ .06) or amplitude (r ¼ .06,
p¼ .73) changes, suggesting that differences in rhythmic SNR cannot
solely account for individual frequency shifts. To visualize the shift in
theta frequency, we computed FFT spectra with a high spectral resolution
(0.33 Hz), separately for rhythmic episodes, and – as traditionally done –
for the entire retention period. Critically, frequency-modulated theta
peaks at frontal channels were only observed for rhythmic, but not for
overall spectra (Fig. 12C) due to a threefold increase in the magnitude of
single-trial events across the entire segment. Moreover, in line with the
results of eBOSC’s wavelet-based frequency estimates, significant nega-
tive load-related slopes were indicated for rhythm specific FFT frequency
estimates (mean¼ -.16, SE ¼ .05, p¼ .005) but not rhythm-unspecific

global estimates (mean¼ -.05, SE ¼ .06, p¼ .36). Hence, a focus on
rhythmic episodes was necessary to reveal memory-load related fre-
quency decreases of frontal theta rhythms, which would have been
missed with traditional analyses.

In sum, these results highlight the potential of single-trial-based
rhythm estimates to boost signal of interest to advance analyses
regarding the role of rhythmicity in cognition.

4. Discussion

In the present manuscript, we explored the feasibility of character-
izing neural rhythms at the level of single trials. To achieve this goal, we
extended a previously published rhythm detection method, BOSC
(Whitten et al., 2011). Based on simulations we demonstrate that our
extended BOSC (eBOSC) algorithm performs well and increases detection
specificity. Crucially, the reliance on robust regression in conjunction
with removal of the rhythmic power band effectively decoupled esti-
mation of the noise background from the rhythmic signal component (as
reflected in the divergent associations with rhythmicity estimates). In
real data, we can successfully separate rhythmic and arrhythmic, some-
times transient components, and further characterize e.g., their ampli-
tude, duration and frequency. In total, single-trial characterization of
neural rhythms appears promising for improving a mechanistic under-
standing of rhythmic processing modes during rest and task.

However, the simulations also reveal challenges for accurate rhythm
characterization in that the abundance estimates clearly depend on
rhythmic power. The comparison to a phase-based rhythm detection
further suggests that this a general limitation independent of the chosen
detection algorithm. Below, we will discuss the potential and challenges
of single-trial rhythm detection in more detail.

4.1. The utility and potential of rhythm detection

Single-trial analyses are rapidly gaining importance (Jones, 2016;
Stokes and Spaak, 2016), in part due to a debate regarding the sustained
vs. transient nature of neural rhythms that cannot be resolved at the level
of data averages (Jones, 2016; van Ede et al., 2018). In short, due to the
non-negative nature of power estimates, time-varying transient power
increases may be represented as sustained power upon averaging, indi-
cating an ambiguity between the duration and power of rhythmic events
(cf., Fig. 2B). Importantly, sustained and transient events may differ in
their neurobiological origin (Sherman et al., 2016), indicating high
theoretical relevance for their differentiation. Moreover, many analysis
procedures, such as phase-based functional connectivity, assume that
estimates are directly linked to the presence of rhythmicity, therefore
leading to interpretational difficulties when it is unclear whether this
condition is met (Aru et al., 2015; Muthukumaraswamy and Singh,
2011). Clear identification of rhythmic time periods in single trials is
necessary to resolve these issues. In the current study, we extended a
state-of-the-art rhythm detection algorithm, and systematically investi-
gated its ability to characterize the power and duration of neural alpha
rhythms at the single-trial level in scalp EEG recordings.

While the standard BOSC method provides a sensible detection of
rhythmic activity in empirical data (Caplan et al., 2015; Whitten et al.,
2011), its’ ability to detect rhythmicity and disambiguate rhythmic
power and duration has not yet been investigated systematically.
Furthermore, we introduced multiple changes that aimed to create
rhythmic episodes with a time-point-wise indication of rhythmicity. For
these reasons, we assessed the performance of both algorithms in simu-
lations. We observed that both algorithms were able to approximate the
duration of rhythmicity across a large range of simulated amplitudes and
durations. However, standard BOSC systematically overestimated
rhythmic duration (Fig. 3A). Furthermore, we observed a bias of rhyth-
micity on the estimated background (Fig. 3C) as also noted by Haller
et al. (2018). In contrast, eBOSC accounts for these problems by intro-
ducing multiple changes: First, by excluding the rhythmic peak prior to

4 Regarding traditional metrics, we assessed three normalization procedures:
raw signals, single-trial log10-transformation and baseline correction with
average power 700 to 500 ms prior to retention onset. In contrast with temporal
baselining, eBOSC performs spectral normalization by explicitly modelling the
1/f slope.
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fitting the arrhythmic background, eBOSC decreased the bias of
narrow-band rhythmicity on the background fit (Fig. 3C), thereby
effectively uncoupling the estimated background amplitude from the
indicated rhythmicity. Second, the post-processing of detected segments
provided a more specific characterization of neural rhythms compared to
standard BOSC. In particular, accounting for the temporal extension of
the wavelet increased the temporal specificity of rhythm detection as
indicated by a better adherence to the a priori duration threshold along
with more precise duration estimates (Fig. 3). In contrast to the high
specificity, the algorithm did trade off sensitivity, leading to sensitivity
losses that were most pronounced at low signal-to-noise ratios (SNR). In
sum, the simulations highlight that eBOSC provides a sensible differen-
tiation of rhythmic and arrhythmic time points as well as accurate
duration estimates, but also highlight challenges for empirically disen-
tangling rhythmic power and duration that arise from sensitivity prob-
lems when the magnitude of rhythms is low. We discuss this further in
section 4.2. In empirical data, eBOSC likewise led to a sensible separation
of rhythmic from arrhythmic topographies (Figs. 4A and 8, Fig. S8) and
time courses, both at the average (Fig. 5A) and the single-trial level
(Fig. 5B). This suggests a sensible separation of rhythmic and arrhythmic
time points also in empirical scenarios.

The specific separation of rhythmic and arrhythmic time points has
multiple immediate benefits that we validated using empirical data from
resting and task states. First, eBOSC separates the scale-free background
from superimposed rhythmicity in a principled manner. The theoretical
importance of such separation has previously been highlighted (Haller
et al., 2018), as narrow-band estimates traditionally confound the two
signals. Here, we show that such a separation empirically produces
different topographies for the arrhythmic background and the super-
imposed rhythmicity (Fig. 8 and Fig. S8). In line with these findings,
Caplan et al. (2015) described a rhythmic occipital alpha topography,
whereas overall power included an additional anterior component across
multiple lower frequencies. While that study did not plot topographies
for the background estimates, our study suggests that this frontal
component is captured by the background magnitude. This provides
convergent evidence for a principled separation of rhythmic and
arrhythmic spectral content which may be treated as a signal of interest
in itself (Buzs"aki and Mizuseki, 2014; He et al., 2010).

The separation of these signal sources at single time points can further
be used to summarize the rhythmic single-trial content via rhythm-
conditional spectra (Fig. 9). Crucially, such a focus on rhythmic pe-
riods resolves biases from arrhythmic periods in the segments of interest.

In line with our hypotheses, simulations (Fig. 2B) and empirical data
(Fig. 9C) indicate that arrhythmic episodes in the analysed segment bias
overall power estimates relative to the extent of their duration.
Conversely, a focus on rhythmic periods induces the most pronounced
amplitude gains when rhythmic periods are sparse. This is in line with
previous observations by Cole and Voytek, 2019, showing dissociations
between power and frequency estimates when considering ‘rhythmic’ vs.
unspecific periods and extend those observations by showing a strong
linear dependence between the rhythm-specific change in estimates and
the duration of arrhythmic bias (Fig. 9C).

Moreover, by allowing a post-hoc duration threshold, eBOSC can
disentangle transient and sustained events in a principled manner
(Fig. 10). This may provide new insights into the contribution of different
biophysical signal generators (Sherman et al., 2016) to observed neural
dynamics and aid the characterization of these processes. Such charac-
terization includes multiple parameters, such as the frequency of rhyth-
mic episodes, their duration, their amplitude and other indices that we
did not consider here (e.g., instantaneous phase, time domain shape).
Here, we observed an increased number of alpha transients following
stimulus onsets, and more sustained rhythms when no stimulus was
presented (Figs. 5A and 10). In line with these observations, Peterson and
Voytek (2017) recently proposed alpha ‘bursts’ to increase visual gain
during stimulus onsets and contrasted this role with decreased cortical
processing during sustained alpha rhythms. Our data supports such a
distinction between sustained and transient events, although it should be
noted that the present transients resemble single time-domain deflections
that are resolved at alpha frequency (Fig. 10A2) and may therefore not
directly relate to the ‘rhythmic bursts’ proposed by Peterson and Voytek
(2017). Note that the reported duration of ‘burst’ events in the literature
is still diverse, often exceeding the 3-cycle threshold used here (Peterson
and Voytek, 2017). In contrast to eBOSC however, previous work has not
accounted for the impact of wavelet duration. It is thus conceivable that
power transients that were previously characterized as 3 cycles or longer
are actually shorter after correcting for the impact of wavelet convolu-
tion, as is done in the current eBOSC implementation (Fig. S1). This
temporal specificity also allows an indication of rhythm-evoked changes,
here exemplified with respect to rhythm-evoked power changes (Fig. S9).
We observed a precise and systematic time-locking of power changes to
the on- and offset of detected rhythmic episodes. This further validates
the detection assumptions of the eBOSC method (i.e. significant power
increases from the background), and highlights the temporal specificity
of eBOSC’s rhythmic episodes.

Fig. 11. Memory load-modulation of traditional wavelet power, rhythmic abundance and rhythmic amplitude. Traditional wavelet estimates indicated no significant
parametric load of either frontal theta or posterior alpha power (A), whereas a load-related increase was indicated for both theta and alpha abundance (B). In contrast
to abundance, no significant relationship with load was indicated for rhythm-specific amplitudes (C).
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In total, eBOSC’s single-trial characterization of neural rhythms
provides multiple immediate benefits over traditional average-based
analyses temporally precise indication of rhythmic and arrhythmic pe-
riods. It thus appears promising for improving a mechanistic under-
standing of rhythmic processing modes during rest and task.

4.2. Single-trial detection of rhythms: rhythmic SNR as a central challenge

The aforementioned examples highlight the utility of differentiating
rhythmic and arrhythmic periods in the ongoing signal. However, the
simulations also indicated problems to accurately do so when rhythmic
power is low. That is, the recognition of rhythms was more difficult at
low levels of SNR, leading to problems with their further characteriza-
tion. In particular, our simulations suggest that estimates of the duration
(Fig. 6A) and frequency stationarity (Fig. S7) increasingly deviate from
the simulated parameters as the SNR decreases. Changes in instantaneous
alpha frequency as a function of cognitive demands have been theorized
and reported in the literature (Haegens et al., 2014; Herrmann et al.,
2016; Mierau et al., 2017; Samaha and Postle, 2015; Wutz et al., 2018),
with varying degrees of control for power differences between conditions
and individuals. Our empirical analyses suggest an increased trial-by-trial
variability of individual alpha frequency estimates as SNR decreases
(Fig. S7). Meanwhile, simulations suggest that such increased variance -
both estimated within indicated rhythmic periods and across whole trials
– may result from lower SNR. While our results do not negate the pos-
sibility of real frequency variations of the alpha rhythm with changes in
task load, they emphasize the importance of controlling for the presence
of rhythms, mirroring considerations for the interpretation of phase es-
timates (Muthukumaraswamy and Singh, 2011) and amplitudes. This
exemplifies how stable inter-individual differences in rhythmicity
(whether due to a real absence of rhythms or prevalent measurement
noise; e.g., distance between source and sensor; head shape; skull
thickness) can affect a variety of ‘meta’-indices (like phase, frequency,
duration) whose estimation accuracy relies on apparent rhythmicity.

The challenges for characterizing rhythms with low rhythmic power
also apply to the estimated rhythmic duration, where the issue is
particularly challenging in the face of legitimate interest regarding the
relationship between the power and duration of rhythmic events. In
particular, sensitivity problems at low rhythmic magnitudes challenge
the ability to empirically disambiguate rhythmic duration and power, as
it makes the former dependent on the latter in the presence of noise (e.g.,
Fig. 2B). Crucially, a tight link between these parameters was also
observed in the empirical data. During both rest and task states, we
observed gradual and stable inter-individual differences in the estimated
extent of rhythmicity that were most strongly related to the overall SNR
in ranges with a pronounced sensitivity loss in simulations (see Fig. 4A
black line). Given the observed detection problems in our simulations,
this ambiguates whether low empirical duration estimates indicate
temporally constrained rhythms or estimation problems. Conceptually,
this relates to the difference between lower SNR subjects having (A) low
power, transient alpha engagement or (B) low power, sustained alpha
engagement that was too faint to be detected (i.e., sensitivity problems).
While the second was the case in the simulations, the absence of a ground
truth does not allow us to resolve this ambiguity in empirical data.

Empirically, multiple results suggest that the low duration estimates
at low SNRs did not exclusively arise from idiosyncrasies of our algo-
rithm. Notably, inter-individual differences in eBOSC’s abundance
measure were strongly correlated with standard BOSC’s Pepisode mea-
sure (Whitten et al., 2011) as well as the phase-based lagged coherence
index (Fransen et al., 2015), thus showing high convergence with
different state-of-the-art techniques (Fig. 6D). Furthermore, detection
performance was visually satisfying in single trials given observable
task-locked rhythm dynamics for rhythmic, but not arrhythmic periods
(Fig. 5B). Moreover, the observed relationship between amplitude gain
and abundance suggests a successful exclusion of (low-power)
arrhythmic episodes at the individual level (Fig. 9C). These observations

indicate that low SNR conditions present a fundamental challenge to
single-trial characterization across different methods. The convergence
between power- and phase-based definitions of rhythmicity also in-
dicates that rhythmicity can exhaustively be described by the spectral
peak above the background, in line with our observations regarding
rhythm-conditional spectra (Fig. 9A).

The observation of strong between-person coupling as a function of
SNR suggests that such sensitivity limitations may account for the inter-
individual amplitude-abundance associations. However, we also
observed a positive association between subjects with high alpha SNR.
Likewise, we observed positive associations between abundance and
rhythmic SNR at the within-subject level (Fig. 5). While trial-wise
coupling was also present in our simulations, the magnitude of these
relationships was lower at high SNR (Fig. 3E). Conversely, in empirical
data, the within-subject association did not vary in magnitude as a
function of the individual SNR. Hence, separate sources may contribute
to a coupling of rhythmic amplitude and abundance: a methods-induced
association in low SNR ranges and an intrinsic coupling between rhyth-
mic strength and duration as a joint representation of rhythmic syn-
chrony. Notably, empirical within-subject coupling between rhythmic
amplitude and duration was previously described for LFP beta bursts in
the subthalamic nucleus (Tinkhauser et al., 2017), with both parameters
being sensitive to a drug manipulation. This association was interpreted
as a “progressive synchronization of inputs over time” (Tinkhauser et al.,
2017; p. 2978). Due to the absence of a dissociation of these parameters,
it remains unclear whether the two measures make independent contri-
butions or whether they can be conceptualized as a single underlying
latent ‘rhythmicity’ index. To resolve this ambiguity, clear dissociations
of amplitude and duration estimates in data with high rhythmic SNR are
necessary. Notably, potential dissociations between the individual power
and duration of beta events has been suggested by Shin et al. (2017), who
described differential relationships between event number, power and
duration to mean power and behaviour.

The high collinearity between overall amplitude and abundance may
be surprising given evidence of their potential dissociation in the case of
beta bursts (where overall abundance is low, but burst amplitudes are
high) (Lundqvist et al., 2016; Sherman et al., 2016; Shin et al., 2017). In
line with this notion, Fransen et al. (2015) reported an increased sensi-
tivity for central beta rhythmicity using the lagged coherence duration
index compared with overall power. It may thus be that the alpha range is
an outlier in this regard due to the presence of relatively sustained
rhythmicity (Fig. 12A). A frequency-wise comparison of the between-
and within-subject collinearity between amplitude and abundance
collinearity indicated a particularly high overlap for the alpha range
(Fig. S6) with relatively lower coupling for delta, theta and beta. In
addition, we observed load modulations on rhythm event rate in many
bands but alpha (Fig. 12B). Whether these band-specific differences
primarily relate to their lower rhythmicity in the current data or reflect
systematic differences between frequencies remains an open question
and requires data with more prominent rhythmicity in these bands.

The strong collinearity of amplitude and duration estimates also
questions the successful disambiguation of the two indices in empirical
data and more generally the interpretation of duration as an independent
index. In cases where such metrics only serve as a sensitive and/or spe-
cific replacement for power (Caplan et al., 2015; Fransen et al., 2015) this
may not be problematic, but care has to be taken in interpreting available
duration indices as power-independent characteristics of rhythmic epi-
sodes. An independent duration index becomes increasingly important
however to assess whether rhythms are stationary or transient. For this
purpose, both amplitude thresholding and phase-progression criteria
have been proposed (Cole and Voytek, 2019; Peterson and Voytek, 2017;
Sherman et al., 2016; van Ede et al., 2018; Vidaurre et al., 2016). Here,
we show that both methods arrive at similar conclusions regarding in-
dividual rhythmic duration and that the mentioned challenges are
therefore applicable to both approaches. As an alternative to
threshold-based methods, van Ede et al. (2018) propose methods based

J.Q. Kosciessa et al. NeuroImage 206 (2020) 116331

18



on e.g., Hidden Markov Models (, 2016) for the estimation of rhythmic
duration. These approaches are interesting as the definition of states to be
inferred in single trials is based on individual (or group) averages, while
the multivariate nature of the signals across channels is also considered.
It is a viable question for future investigations whether such approaches
can adequately characterize the duration of rhythmic states in scenarios
where the present methods fail.

4.3. Experimental manipulation of rhythm-specific indices

To establish the practical utility of rhythm detection, we probed the
experimental modulation of rhythm-specific indices during working
memory retention. We focused on this phase as it has received large in-
terest for distinguishing between transient and sustained retention codes
(Lundqvist et al., 2016; Lundqvist et al., 2018), with both theoretical
models (Jensen and Lisman, 1998; Lisman and Jensen, 2013; Lundqvist
et al., 2011) and empirical evidence (Jensen et al., 2002; Jensen and
Tesche, 2002; Jokisch and Jensen, 2007; Meltzer et al., 2008; Michels
et al., 2008; Onton et al., 2005; Scheeringa et al., 2009; Tuladhar et al.,
2007) suggesting that low-frequency rhythmicity increases with load. In
line with this evidence, we observed load-related increases in the total
duration of frontal theta and right parietal alpha rhythms during visual
working memory retention, despite traditional power estimates not
reaching statistical significance. Reinforcing these results, mixed
modelling indicated a high sensitivity of rhythmic abundance to both eye
closure and working memory load while controlling for its collinearity
with traditional estimates. This may be due to multiple advantages:
eBOSC’s estimates are spectrally normalized and individually specific
e.g. to individual peak frequencies, while not assuming stationarity

across time. Furthermore, rhythm-specific measures are theoretically
agnostic to the magnitude of desynchronization, as they only charac-
terize rhythmicity when it is present. Interestingly, abundance was also
more sensitive to the load effect than rhythm-specific amplitudes, sug-
gesting that duration may be a critical parameter to describe cognitive
effects despite high collinearity with amplitude.

In addition to our confirmatory analyses in the theta and alpha band,
we also explored the load modulation of individual spectral events. Here,
we observed that the rate of spectral events during the retention phase
was modulated in the theta, beta and gamma, but not the alpha band.
This is interesting given that alpha events had a more continuously
‘rhythmic’ appearance overall, whereas the relative rate of spectral
events may be relevant for frequency bands with sparse events, as has
been suggested for the beta band (Shin et al., 2017). While we confirm
the feasibility of such analyses across multiple frequency bands here, we
note that further work on the complementary value of such event rates is
required to establish their functional significance.

During our analyses we also observed frequency decreases of rhyth-
mic episodes in the theta band at frontal channels. Decreases in rhythmic
theta frequency have previously been hypothesized in the framework of
theta-gamma multiplexing serving working memory storage (Bahra-
misharif et al., 2018; Jensen and Lisman, 1998). In particular, a version
of this computational model anticipates that the frequency of theta
rhythms determines the amount of gamma cycles that can be multiplexed
within a single theta cycle. As the number of targets to be held in memory
increases, the theory predicts a slowing of theta with increasing load.
Such a load-related decrease in gamma-modulating theta frequencies has
been observed in human hippocampus (Axmacher et al., 2010). How-
ever, this has been difficult to show outside of invasive recordings. Here

Fig. 12. Descriptors of single-trial rhythmic events relate to working memory load. (A, B) Rhythmic event rates are a relevant parameter for describing band-specific
task modulations. (A) Different frequency bands vary in their sustained vs. transient time domain appearance. Conventions are the same as in Fig. 10A. X-axes are
scaled to cover approx. 6 cycles at each frequency. (B) Rhythmic event rates are modulated by working memory load except in the alpha band, where events appear the
most sustained. Alpha rate was averaged from 8 to 12 Hz here to exclude beta rate decreases. (C) Rhythmic frontal theta frequency decreases with working memory
load. (Top) Rhythm-specific spectra indicate a parametric shift in theta frequencies with load. Statistics are based on a cluster-based permutation test. The inset shows
the cluster for which a significant relation between load and the average frequency of rhythmic theta episodes is indicated. Spectra are averaged across significant
cluster channels. Error bars indicate within-subject standard errors. (Lower) The overall spectrum does not show a clear spectral peak in the theta range or a shift in
theta frequency. Note that amplitude values are increased in the rhythm-specific version compared to the rhythm-unspecific estimates.
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we observed that overall power did not exhibit a clear spectral peak in
the theta range, but that such peak became apparent only when estimates
were constrained to rhythmic periods. Furthermore, a parametric
decrease in the frequency of single-trial rhythmic episodes was indicated.
This suggests that the observed frontal theta signature may support the
multiplexing of individual items during the retention period and may
even have a hippocampal origin. However, as we observed this effect by
exploration, further work should confirm these hypotheses.

Taken together, our results highlight that a variety of rhythm-specific
characteristics are sensitive to experimental modulations, such as
working memory load. Despite the observed high collinearity between
estimates, modulations suggest sensitivity differences between different
rhythm estimates. Their automatic single-trial estimation using tools
such as eBOSC may thus further our understanding of the role of rhyth-
micity in cognition, without necessitating the (often unchecked) as-
sumptions of data averages.

4.4. Comparison to other single-trial detection algorithms & limitations

The BOSC-family of methods is conceptually similar to other methods
that are currently used to identify and describe spectral events in single
trials. These methods share the underlying principle of identifying
rhythmic events based on momentary power increases relative to an
average baseline. Such detection is most common regarding transient
beta bursts, for which a beta-specific power threshold is often defined.
For example, Sherman et al. (2016) identified transient beta events based
on the highest power within the beta range, i.e., without an explicit
threshold. Shin et al. (2017) introduced a beta-specific power threshold
based on average pre-stimulus power. Similarly, Feingold et al. (2015)
defined beta events as exceeding 1.5/3 times the median beta power of
that channel, while Tinkhauser et al. (2017) applied a 75th percentile
threshold to beta amplitudes. These approaches therefore use a spectrally
local power criterion, but no duration threshold. Most closely related to
the BOSC-family is the MODAL method by Watrous et al. (2018), which
similarly uses a robust fit of the 1/f spectrum to detect rhythmic events in
continuous data and then further derives frequency and phase estimates
for those rhythmic periods. This is conceptually similar to eBOSC’s
definition as ‘statistically significant’ deviations in power from the 1/f
background spectrum, except for the absence of a dedicated power or
duration threshold. However, all of the above methods share the
fundamental assumption of a momentary power deviation from a
frequency-specific ‘background’, with varying implementations of a 1/f
model assumption. Such assumption can be useful to avoid a bias of
rhythmic content on the power threshold (as a spectrally local power
threshold depends on the average magnitude of band-limited rhyth-
micity, i.e., arrhythmic þ rhythmic power). Removing the rhythmic peak
prior to background modelling helps to avoid such bias (Fig. 3C). The
eBOSC method thereby provides a principled approach for the detection
of single-trial events across frequencies (as shown in Fig. 9).

A systematic and general removal of spectral peaks remains a chal-
lenge for adequate background estimates. In the current application, we
exclusively removed alpha-band power prior to performing the back-
ground fit. While the alpha rhythm produced the largest spectral peak in
our data (see Fig. S4), this should not be understood as a fixed parameter
of the eBOSC approach, as other rhythmic peaks may bias the estimation
of the background spectrum depending on the recording’s specifics (e.g.,
type, location etc.). We perceive the need to remove rhythmic peaks prior
to background fitting as a general one,5 as residual spectral peaks bias
detection efficacy across the entire spectrum via misfits of the back-
ground intercept and/or slope. In particular, rhythmic peaks at higher

frequencies disproportionally increase the background estimate at lower
frequencies due to the fitting in logarithmic space. Thus, a principled
removal of any spectral peaks in the average spectrum is necessary.
Recently, Haller et al. (2018) proposed a principled approach for the
removal of rhythmic spectral peaks, which may afford rhythm-unbiased
background estimates without requiring priors regarding the location of
spectral peaks. It may thus represent a useful pre-processing step for
further applications. Regarding the present data, we anticipate no qual-
itative changes compared to our alpha exclusion approach as (a) we did
not consistently observe an association between background and rhyth-
micity estimates (Fig. 6), and the signal was dominated by an alpha
frequency peak, which consistently exceeded eBOSC’s power threshold.

Our results further question the adequacy of a stationary power
threshold (as traditionally employed and used here) for assessing the
amplitude-duration relationship between individual rhythmic episodes.
In our empirical analyses, the rhythmic SNR, reflecting the deviation of
amplitudes during rhythmic periods from the stationary background, was
consistently most strongly associated with the estimated duration (Figs. 6
and 7). While keeping the background (and thus the power threshold)
stable conforms with the common assumption of rhythmicity being
captured within a spectral peak deviating from a stationary background
(Fig. 9), it may also exacerbate an amplitude-abundance coupling on a
trial-by-trial basis (see Fig. 7C for a schematic of the assumed association)
as ongoing power fluctuations can only be explained by changes in the
rhythmic and not the arrhythmic power term. Further research on dy-
namic thresholds may shed further light on this issue.

Another point worth highlighting is that eBOSC operates on wavelet-
derived power estimates. The specific need for wavelet estimates results
frommodel-based assumptions about the time-frequency extension of the
wavelet that are used for refining detected rhythmic time points (see
Fig. 2 and section 2.6). Naturally, the choice of wavelet parameters,
specifically their center frequency and duration, influences the time-
frequency representations upon which eBOSC operates. Here, we used
6 cycles as the duration parameter, in line with previous work with
standard BOSC (Caplan et al., 2015; Whitten et al., 2011). In a supple-
mentary analysis, we compared detection performance using a 3 cycle
wavelet and found increased accuracy only for short rhythmicity,
whereas the sensitivity to longer rhythmicity was decreased (Fig. S3).
This is consistent with the assumption that wavelet duration regulates the
trade-off between temporal and spectral specificity, with longer wavelets
allowing for a finer separation of nearby frequencies at the cost of tem-
poral specificity. Another free parameter concerns the choice of center
frequencies. In the post-processing procedures, we perform a sort of
spectral filtering based on the pass-band of the wavelet (Fig. S1), which is
determined by its duration. Resolving rhythms at nearby frequencies thus
requires the use of wavelets with sufficient frequency resolution, not only
with regard to the sampled frequencies, but also a sufficient duration of
the wavelet. This highlights the dependence of eBOSC outputs on the
specifics of the wavelet-based transformation from the time into the
frequency domain.

An alternative, parallel approach to characterize ongoing rhythmicity
is based on characterizing the waveform shape in the time domain,
thereby circumventing power analyses entirely (Cole and Voytek, 2019).
While such an approach is intriguing, further work is needed to show
which analysis sequence is more fruitful: (a) identifying events in the
frequency domain and then describing the associated waveform shape in
the time domain (e.g., eBOSC) or (b) identifying events and character-
izing them based on time domain features (e.g., cycle-by-cycle analysis).
As both procedures operate on the basis of single trials, similar challenges
(i.e., especially rhythmic SNR) are likely to apply to both approaches.

5. Conclusion

We extended a state-of-the-art rhythm detection method and char-
acterized alpha rhythms in simulated, resting and task data at the single
trial level. By using simulations, we show that rhythm detection can be

5 A potential bias is less likely in the case of sporadic rhythmicity that does not
produce a peak in the average spectrum. In this case, the power of the single-
trial events would exceed the background estimate that is decreased due to
the prevalence of arrhythmic periods.
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employed to derive specific estimates of rhythmicity, with fine-grained
control over its definition, and to reduce the bias of rhythm duration
on amplitude estimates that commonly exists in standard analysis pro-
cedures. However, we also observe striking inter-individual differences
in the indicated duration of rhythmicity, which for subjects with low
alpha power may be due to insufficient single-trial rhythmicity. We
further show that low rhythmicity can lead to biased estimates, in
particular underestimated duration and increased variability of rhythmic
frequency. Given these constraints, we have provided examples of
eBOSC’s efficacy to characterize rhythms that may prove useful for
investigating the origin and functional role of neural rhythms in health
and disease, and in turn, the current study works to establish the foun-
dation for ideographic analyses of neural rhythms.

Data availability

The scripts implementing the eBOSC pipelines are available at
github.com/jkosciessa/eBOSC alongside the simulation scripts that were
used to assess eBOSC’s detection properties. Data will be made available
upon reasonable request.
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SI Methods 

 
Rhythmic frequency variability during rest. As an exemplary characteristic of rhythmicity, we 

assessed the stability of IAF estimates by considering the variability across trials of the task as a 

function of indicated rhythmicity. Trial-wise rhythmic IAF variability (Figure S7A) was calculated as 

the standard deviation of the mean frequency of alpha episodes (8-15 Hz). That is, for each trial, 

we averaged the estimated mean frequency of rhythmic episodes within that trial and computed 

the standard deviation across trials. Whole-trial IAF variability (Figure S7B) was similarly calculated 

as the standard deviation of the IAF, with single-trial IAF defined as the frequency with the largest 
peak magnitude between 8-15 Hz, averaged across the whole trial, i.e., encompassing segments 

both designated as rhythmic and arrhythmic. Finally, we compared the empirical variability with that 

observed in simulations (see section 2.8). 

 

Depiction of rhythm-evoked effects. The temporal specificity of rhythmic episodes further allows 

the assessment of ‘rhythm-evoked’ effects in the temporal or spectral domain. Here, we showcase 

the rhythm-evoked changes in the same frequency band to indicate the temporal specificity of the 
indicated rhythmic periods (Figure S9). For this purpose, we calculated time-frequency 

representations (TFRs) using 6-cycle wavelets and extracted power in the theta (3-8 Hz), alpha (8-

15 Hz), beta (15-25 Hz) and gamma-band (25-64 Hz) in 2.4 s periods centred on the on- and offset 

of indicated rhythmic periods in the respective band. Separate TFRs were calculated for the 

detected episodes in each channel, followed by averaging across episodes and channels. Finally, 

we z-transformed the individual averages to highlight the consistency across subjects. 

 

SI Results 

 
IAF variability varies as a function of abundance. Given the strong dependence of accurate 

duration estimates on sufficient rhythmic power, we investigated how the differences in rhythmicity 

affect the single-trial estimation of another characteristic, namely the individual alpha frequency 

(IAF) that generally shows high temporal stability (i.e., trait-qualities) within person at the average 
level (Grandy, Werkle-Bergner, Chicherio, Schmiedek, et al., 2013b) We observed a strong 

negative association between the estimated rhythmicity and fluctuations in the rhythmic IAF 

between trials (Figure S7A). That is, for subjects with pervasive alpha rhythms, IAF estimates were 

reliably stable across trials, whereas frequency estimates varied when rhythmicity was low. Notably 

a qualitatively and quantitatively similar association was observed in simulations with a stationary 

alpha frequency (black lines in Figure S7), suggesting that such variation may be artefactual. As 

lower abundance implies a smaller number of samples from which the IAF is estimated, this effect 
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could amount to a sampling confound. However, we observed a similar link between overall SNR 

and IAF variability when the latter was estimated across all timepoints in a trial (Figure S7B). 

Simulations with stationary 10 Hz rhythms gave rise to similar results, suggesting that estimated 

frequency fluctuations can arise (at least in part) from the absence of clear rhythmicity. Hence, 
even when the IAF is intra-individually stable, its moment-to-moment estimation may induce 

variability when the rhythms are not clearly present. 
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Fig. S1. Example of eBOSC’s post-processing routines to derive sparse continuous rhythmic 
‘episodes’. (A) Simulated signal containing 1/f noise and superimposed 10 Hz rhythmicity. (B) 10 
Hz rhythmic signal only. (C) Traditional output of BOSC detection: a binary matrix indicates time-
frequency points that adhere to power and duration thresholds (in yellow). These matrices are used 
to calculate Pepisode. (D) First step of eBOSC’s post-processing: the detected matrix is ‘sparsified’ 
in the spectral dimension to create continuous rhythmic episodes. (E) Second step of eBOSC’s 
post-processing: each episode is temporally corrected for the temporal wavelet convolution by 
estimating the bias of each time point on adjacent time points (here exemplified for select time 
points via red traces). Only time points that exceed the bias estimated from surrounding time points 
are retained. (F) Example of final episode trace. The black line indicates the time points that were 
retained, whereas the red segments were removed during step E. The final episode output is then 
characterized according to e.g., mean frequency, duration and amplitude, whereas the time points 
of rhythmicity can for example be used to define rhythm-conditional spectra. These episodes are 
used to calculate abundance. 
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Fig. S2. Rhythm detection performance of different post-processing options. (A) Deviation of 
abundance estimates from simulated duration. (B) Hit rates. (C) False alarm rates. The subplot 
structure is the same as in Figure 3A. Rows show detection performance for different routines. The 
analyses in the main paper use the ‘MaxBias PT’ method. In the ‘PT’ method, only power values 
above the threshold were considered for post-processing, otherwise ‘raw’ power values were 
considered. Note that using the PT method, abundance is highly specific and is never over- but 
only underestimated, thus generally providing a lower bound on the real rhythmic abundance. 
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Fig. S3. Signal detection results using a 3 cycle wavelet (compared to the 6 cycle wavelet used for 
the main analyses). (A) Results for data from a 3 cycle wavelet transform indicate high specificity, 
with a gradient of sensitivity spanned by overall SNR. (B) Compared to the 6 cycle wavelet, the use 
of a 3 cycle wavelet increases sensitivity for shorter rhythms (around 4 cycles) at high SNR, 
whereas it decreases sensitivity for more sustained rhythmicity particularly in lower SNR ranges. 
Specificity is relatively unaffected. 
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Fig. S4. Individual spectra (black) and power thresholds (red) for the eyes closed and eyes open 
resting state, as well as task retention period. Power thresholds suggest a successful exclusion of 
the alpha peak and similar fits across subjects. Large spectral peaks are consistently found in the 
8-15 Hz range. Spectra are averaged across posterior-occipital channels. Spectra and power 
thresholds have been spectrally concatenated and z-scored across frequencies for enhanced 
visibility. Subjects have been sorted by descending 8-15 Hz power during the eyes closed resting 
state. (Bottom) The alpha peak is consistently excluded from the background threshold. Red traces 
indicate the spectral power above the power threshold, black traces indicate the segments below 
the power threshold. Note that falling below the power threshold does not prevent detection as 
single-trial power can exceed the average power and thus the power threshold. These fluctuations 
are crucial for the detection of rhythmicity as the power threshold is fixed (see also Figure 7 in main 
text). 
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Fig. S5. Amplitude-abundance coupling during the retention phase. Similar to the observations in 
the resting state data (Figure 6 in the main text), the effective rhythmic peak explains the estimated 
abundance, whereas the background estimate is less consistently associated with abundance 
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Fig. S6. Topographies of between-subject (1st row) and within-subject (2nd row) collinearity 
(Pearson correlations) of overall amplitude and abundance for multiple low-frequency ranges. 
Collinearity is highest for the alpha band. Highest within-subject collinearity is observed for 
channels with high abundance. Corresponding grand average topographies of overall amplitude 
and abundance are shown in Figure S8. 
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Fig. S7. Trial-by-trial IAF variability is associated with sparse rhythmicity. (A) Individual alpha 
frequency (IAF) precision across trials is related to abundance. Lower individual abundance 
estimates are associated with increased across-trial IAF variability. (B) This relationship also exists 
when considering overall SNR and IAF estimates from across the whole trial. Superimposed black 
lines show the 6th order polynomial fit for simulation results encompassing varying rhythm durations 
and amplitudes. Empirically estimated frequency variability is quantitatively similar to the bias 
observed at low SNRs in the simulated data. 
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Fig. S8. Topographies of overall (narrowband) amplitudes, estimated background amplitudes and 
abundance indicate a principled exclusion of stationary scale-free background amplitudes from 
rhythmicity estimates across multiple frequencies. In addition, the topographies suggest that overall 
amplitudes represent a mixture of a relatively stationary background and spectrally varying rhythmic 
components. As in Figure 8, the topographies are grand averages from the retention phase of the 
Sternberg task across sessions. 
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Fig. S9. On- and offsets of rhythmic episodes characterize ‘rhythm-evoked’ effects. (A) Schematic 
alignment of data to the on- and offsets of rhythmic periods. (B) Rhythm on- and offsets are marked 
by sudden power shifts at their respective frequency. Individual normalized wavelet power shows 
a strong increase at the rhythmic onset (B1) and a decrease once rhythmic episodes end (B2). The 
difference between on- and offset-related power summarizes the evoked effect of rhythmic 
episodes on ongoing power (B3). Power was extracted within a fixed peri-onset and peri-offset 
window for all channels where episodes were detected and subsequently averaged across 
episodes, loads and channels. Finally, the individual averages were z-normalized. The rightmost 
plots show the grand average across subjects. Data are from extended periods of the Sternberg 
task in Session 1. 
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Fig. S10. Results of cluster-based permutation tests for different baseline variants: (A) average 
baseline, (B) single-trial log10-transform, and (C) raw power. While all normalizations produce 
similar clusters to the observed abundance effect (Figure 11 in main text), no cluster reached 
statistical significance. 
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Table S1. Berger effect of eye closure on rhythmic and arrhythmic alpha indices, controlling for the 
high collinearity between indicators 

   

Bootstrap 95% 
CI 

 

  
Dependent variable  Predictor b Low High SE F-value p-value 

Rhythmic abundance 
Arrhythmic amplitude 0.33 0.15 0.51 0.09 14.0 0.001 

Berger effect -1.11 -1.44 -0.79 0.16 47.7 0.000 

Rhythmic abundance 
Rhythmic amplitude 0.46 0.28 0.63 0.09 26.3 0.000 

Berger effect -0.94 -1.25 -0.63 0.15 36.5 0.000 

Rhythmic amplitude 
Arrhythmic amplitude 0.85 0.76 0.95 0.05 331.4 0.000 

Berger effect -0.26 -0.42 -0.10 0.08 10.4 0.003 

Rhythmic amplitude 
Rhythmic abundance 0.51 0.28 0.75 0.11 19.3 0.000 

Berger effect -0.37 -0.76 0.02 0.19 3.5 0.070 

Arrhythmic amplitude 
Rhythmic abundance 0.44 0.14 0.73 0.15 8.6 0.006 

Berger effect -0.37 -0.89 0.15 0.25 2.0 0.165 

Arrhythmic amplitude 
Rhythmic amplitude 0.99 0.88 1.09 0.05 370.3 0.000 

Berger effect 0.10 -0.09 0.29 0.09 1.0 0.323 

Effects were estimated within linear mixed effects models. Green shading indicates significant (p < 
.05) Berger effects of eye opening that cannot be explained by potential collinearity with the 
remaining predictor variable; orange shading indicates the absence of an indicated unique Berger 
effect on the dependent variable.  
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Table S2. Unique memory load effects on rhythm-specific estimates, controlling for high collinearity 
with traditional estimates 

    

Dependent variable  Predictor F-value p-value 

Alpha rhythmic abundance 
Alpha overall amplitude 217.8 <0.001 

Load 12.1 <0.001 

Theta rhythmic abundance 
Theta overall amplitude 75.6 <0.001 

Load 3.3 0.045 

Alpha rhythmic abundance 
Alpha rhythmic amplitude 112.4 0.000 

Load 13.5 0.000 

Theta rhythmic abundance 
Theta rhythmic amplitude 59.8 0.000 

Load 5.3 0.008 

Alpha rhythmic amplitude 
Alpha overall amplitude 81.0 <0.001 

Load 1.3 0.278 

Theta rhythmic amplitude 
Theta overall amplitude 56.7 <0.001 

Load 0.3 0.744 

Effects were estimated within linear mixed effects models. Green shading indicates significant (p < 
.05) memory load effects that cannot be explained by potential collinearity with the remaining 
predictor variable; orange shading indicates the absence of an indicated unique memory load effect 
on the dependent variable. Overall amplitudes refer to baselined alpha power as depicted in Figure 
11A. 
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