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1. Introduction 
 
The objective of the data analysis is to test the following hypotheses: 
 

1. There is an effect of scene category (i.e., a difference between images showing man-made vs. 
natural environments) on the amplitude of the N1 component, i.e., the first major negative EEG 
voltage deflection. 

2. There are effects of image novelty (i.e., between images shown for the first time/new vs. 
repeated/old images) within the time-range from 300–500 ms ... 

a.) on EEG voltage at fronto-central channels. 
b.) on theta power at fronto-central channels. 
c.) on alpha power at posterior channels. 

3. There are effects of successful recognition of old images (i.e., a difference between old images 
correctly recognized as old [hits] vs. old images incorrectly judged as new [misses]) ... 

a.) on EEG voltage at any channels, at any time. 
b.) on spectral power, at any frequencies, at any channels, at any time. 

4. There are effects of subsequent memory (i.e., a difference between images that will be 
successfully remembered vs. forgotten on a subsequent repetition) ... 

a.) on EEG voltage at any channels, at any time. 
b.) on spectral power, at any frequencies, at any channels, at any time. 

 
2. Results 
 
1.1 Effect of scene category on N1 amplitude 
 
The first analysis assessed potential differences in visual N1 amplitude as a function of scene category, i.e., 
whether the presented image reflected a natural or manmade scene. To focus on evoked potentials, we 
subtracted single-trial baselines defined as the average voltage during the 200 ms preceding stimulus 
presentation. Then, the channel with the minimum voltage between 40 and 120 ms following stimulus 
presentation was identified. This analysis identified channel Oz, which we used in the subsequent analyses. 
Notably, inspection of individual ERPs indicated striking, and highly systematic N1 latency differences 
between two groups of participants: the initial 17 participants that were recorded in an electrically shielded 
booth showed a comparatively earlier visual N1 peak than participants that were recorded in a room without 
shielding. These systematic differences are unlikely to have arisen during preprocessing, as the preprocessing 
setup was identical across all subjects. Given that these two subgroups are differentiated by their systematic 
differences in shielding during recording, differences may be related to covarying factors such as the exact 
monitor and trigger setup. The sparse information provided about the setup does not allow clear conclusions 
at this point, but potential confounding factors should be reconsidered. To account for this observed 
variability in N1 latency, N1 peak amplitude was measured at the first local minimum between 40 and 120 
ms of the across-condition average Oz trace. A subsequent paired-sample t-test did not indicate statistically 
significant differences in N1 peak amplitudes between conditions (t(32)= 1.097964244609333, p = 
0.280413264498449) at a canonical 5% significance threshold. This analysis does therefore not provide 
evidence that scene category modulates visual N1 peak amplitude. 
 
Hypothesis 1 was not confirmed. 
 
 

 
 



 
 

Figure 1. N1 peak amplitude is not modulated by 
scene category. (a) The channel showing minimum 
voltage amplitude between 40 to 120 ms following stimulus 
onset was used to extract the N1. The red dot indicates the 
analyzed sensor Oz. (b) Data isnpection revealed systematic 
differences in N1 latency between two participant 
subgroups. Traces are mean +/- S.E.M. (c) Event-related 
potential at Oz after alignment to individual N1 peak 
latency. Traces are mean +/- within-subject S.E.M. (d) No 
differences in N1 peak amplitude as a function of scene 
category were observed. Data are within-subject centered 
to emphasize potential between-condition differences. 

 
 

1.2 Effect of image novelty  
 

a. on fronto-central EEG voltage 
 
Next, we tested whether image novelty affected EEG voltage, i.e., whether voltage differed 
depending on whether the presented image was a repeat (“old”) or presented for the first time 
(“new”). We performed a task PLS to test for potential differences between conditions. Task PLS 
assesses optimal statistical relations between time-frequency matrices and experimental conditions 
(here two: old and new stimuli). We included only time points during the specified 300 to 500 ms 
post-stimulus time window, and set data outside the hypothesized locations to zero (see also 
methods). This task PLS indicated one significant latent variable (permuted p ~ 0). Prominent 
loadings were observed at a mediofrontal channel as well as a central cluster of channels (Figure 
2a). At these locations, voltage was increased during old relative to new images during the 300 to 
500 ms post-stimulus time window (Figure 2b-d). 
 
Hypothesis 2a was confirmed. 
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Figure 2. Repeat image presentations increase 
voltage over mediofrontal and central channels. (a) 
Max. bootstrap ratio between 300 and 500 ms following 
stimulus onset. (b) Multivariate brainscores indicated a 
stronger expression of this multivariate pattern for old 
compared to new images. (c, d) Traces extracted from 
frontal (c) and central (d) channels highlighted in panel 
a. Traces indicate means +/- within-subject SEMs. 

 
b. on frontal theta power 

 
Next, we performed a similar task PLS for theta power. This task PLS indicated significant 
differences of frontal theta power as a function of image novelty (permuted p ~ 0). Specifically, 
mediofrontal theta power increased when the presented image was a repeat compared to when it 
was presented for the first time, starting during the specified 300 to 500 ms post-stimulus time 
window. 
 
Hypothesis 2b was confirmed. 
 

 

 
 

 
Figure 3. Theta power at frontal channels as a function of image novelty. (a) 
Topography of bootstrap ratios from the task PLS. (b) Brainscores indicated stronger 
expression of the multivariate pattern for old as compared to new images. (c) Theta power 
traces extracted from the most robust channels highlighted in panel a. Traces indicate means 
+/- within-subject SEMs. 

 
 

c. on posterior alpha power 
 

-10

-8

-6Br
ain

sc
or

e 
(a

rb
. u

.)

10-3

oldnew
novelty

0 0.4-8
-6
-4
-2
0
2

10-4

0 0.4
Time (s from stimulus onset)

-8
-6
-4
-2
0

ER
P

10 -4

old
new

c

d

a b

c d

0
mean BSR

4

a b c-137.6
-137.4
-137.2
-137

-136.8
-136.6Br

ain
sc

or
e 

(a
rb

. u
.)

oldnew
novelty

0 1
Time (s)

-4.9

-4.8

Th
et

a 
po

we
r (

log
10

)

old

new

0
mean BSR

3



Next, we performed a task PLS that included data from posterior and occipital channels during the 
300 to 500 ms post-stimulus time window. This task PLS did not indicate significant differences of 
posterior alpha power as a function of image novelty (first latent variable: permuted p = 
0.203796203796204). Figure 4 shows alpha traces as a function of old/new image presentation. 
 
Hypothesis 2c was not confirmed. 
 

 
 

 
 

Figure 4. Alpha power at posterior-occipital 
channels does not change as a function of image 
novelty. Traces are averaged across all channels with 
labels starting with ‘P’, or ‘O’. The white shading 
indicates the targeted time period. Traces indicate 
means +/- within-subject SEMs. 

 
 
1.3 Effect of successful recognition  
 

a. on EEG voltage 
 

An exploratory task PLS of voltage changes as a function of successful recognition (i.e., a difference 
between old images correctly recognized as old [hits] vs. old images incorrectly judged as new 
[misses]) indicated a significant latent variable (permuted p ~ 0). Prominent differences were 
observed at multiple channels and time periods (Figure 5). During an early time window from 
around 300 to 500 ms following stimulus presentation, mediofrontal voltage was elevated for 
subsequent hits compared to misses, while right anterior voltage was decreased (Figure 5c, top). 
During a later time window from around 600 to 1000 ms, centroparietal voltage was increased for 
hits compared to misses, while right anterior and posterior voltage was decreased (Figure 5c, 
middle). Finally, during a late time window from around 1.2 to 1.2 s, bilateral centro-posterior 
voltage was decreased for subsequent hits, while lateral and posterior voltage showed relative 
increases (Figure 5c, bottom). Taken together, this exploratory analysis indicates that EEG voltage 
shows diverse differences depending on whether a presented ‘old’ stimulus was correctly recognized 
as old or not. 
 
Hypothesis 3a was confirmed. 
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Figure 5. Effect of successful recognition of repeated images on EEG 
voltage. (a) Average bootstrap ratios (BSRs) indicated robust differences at 
multiple timepoints. (b) Expression of this pattern was more pronounced in hit 
as compared to miss trials. (c) Topographies showing mean BSRs across the 
time windows shown via colored shading in a. Traces have been extracted from 
the channels that are indicated and numbered in the topographies. Identical 
colored shading is provided on top of traces for quick reference. Traces indicate 
means +/- within-subject SEMs. 

 
b. on spectral power 
 

An exploratory task PLS of spectral power changes as a function of successful recognition indicated 
a significant latent variable (permuted p ~ 0). This latent variable reflected spectral power differences 
between images that were correctly identified as having previously been presented (hits) or 
incorrectly identified as novel (misses). These differences were observed at multiple frequencies 
and time windows (Figure 6). Relative to misses, hits showed initially larger mediofrontal theta 
power, followed by decreased theta power later during the trial (Figure 6c). The opposite pattern 
was observed for posterior alpha power, with initially decreased alpha power for hits relative to 
misses during an earlier time window around 500 to 1000 ms following stimulus onset being 
followed by decreased theta power later during the trial (Figure 6d). 
 
Hypothesis 3b was confirmed. 
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Figure 6. Effects of successful recognition of repeated images on spectral 
power. (a) Average bootstrap ratios (BSRs) indicated that multiple timepoints 
and frequencies exhibited robust differences. (b) Expression of this pattern was 
more pronounced in hit as compared to miss trials. (c, d) Traces and 
topographies of theta and alpha power. Traces indicate means +/- within-
subject SEMs and were extracted from the channels indicated on the right. 
Colored shading indicates the time periods across which bootstrap ratios were 
averaged for the topographies. 

 
 

 
1.4 Effect of subsequent memory  
 

a. on EEG voltage 
 
An exploratory task PLS of EEG voltage differences as a function of subsequent memory i.e., a 
difference between images that will be successfully remembered vs. forgotten on a subsequent 
repetition) indicated one significant latent variable (permuted p = 0.035964035964036). However, 
sub-001 represented a notable outlier in this analysis. No significant latent variable (indicating 
condition differences) was observed after removing this outlier prior to analysis (1st LV: permuted p: 
0.0719280719280719). The analysis therefore does not indicate robust differences in EEG voltage 
as a function of subsequent memory 
 
Hypothesis 4a was not confirmed. 
 

 
b. on spectral power 

 
An exploratory task PLS of spectral power changes as a function of subsequent memory for the 
presented images indicated a significant latent variable (permuted p = 0.002997002997003). This 
variable primarily reflected differences in frontal theta and posterior alpha power (Figure 7). 
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Specifically, frontal theta power was larger for subsequently remembered than forgotten stimuli 
during approx. the first second following stimulus presentation. Moreover, posterior alpha power 
was more strongly reduced for subsequently remembered than forgotten stimuli from around 800 
to 1000 ms following stimulus onset. 
 
Hypothesis 4a was confirmed. 

 
 

 
 

Figure 7. Effects of subsequent memory on spectral power. (a) Average 
bootstrap ratios (BSRs) dominantly indicated earlier differences in theta 
frequencies, and later differences in alpha power. (b) Expression of this pattern 
was more pronounced when stimuli were remembered rather than forgotten. (c, 
d) Topographies of average bootstrap ratios in the theta (c) and alpha (d) 
frequency range, alongside traces of spectral power. Traces indicate means +/- 
within-subject SEMs and were extracted from the channels indicated on the right. 
Colored shading indicates the time periods across which bootstrap ratios were 
averaged for the topographies. 
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3. Methods 
 
Preprocessing. Preprocessing and analysis of EEG data were conducted with the FieldTrip toolbox 
(revision 021ac9105) (Oostenveld, Fries, Maris, & Schoffelen, 2011) and using custom-written MATLAB 
(The MathWorks Inc., Natick, MA, USA) code. EEG data were filtered using a 4th order Butterworth filter 
with a pass-band of 1 to 100 Hz. Subsequently, data were downsampled to 250   Hz and all channels were 
re-referenced to mathematically averaged mastoids. Blink, movement and heart-beat artifacts were identified 
using Independent Component Analysis (ICA) (Bell & Sejnowski, 1995) and removed from the signal. Prior 
to ICA detection, large artifactual time periods were manually labelled and excluded from the ICA to 
facilitate the detection of more specific components. Artifact-contaminated channels (determined across 
epochs) were automatically detected using (a) an adapted version of the FASTER algorithm (Nolan, Whelan, 
& Reilly, 2010), and by (b) detecting outliers exceeding three standard deviations of the kurtosis of the 
distribution of power values in each epoch within low (0.2-2 Hz) or high (30-100 Hz) frequency bands, 
respectively. Rejected channels were interpolated using spherical splines (Perrin, Pernier, Bertrand, & 
Echallier, 1989). Subsequently, noisy epochs were likewise excluded based on a custom implementation of 
FASTER and on recursive outlier detection. Finally, we epoched the cleaned data from -1s to 2s surrounding 
the onset of visual stimuli. Given that the latter half of the sample was recorded without electrical shielding, 
line noise at 50, 100 and 150 Hz was removed using Discrete Fourier Transform as implemented in 
FieldTrip. To enhance spatial specificity, scalp current density estimates were derived via 4th order spherical 
splines 82 using a standard 1005 channel layout (conductivity: 0.33 S/m; regularization: 1^-05; 14th degree 
polynomials). 
 
ERP analyses. We baseline-adjusted signals by subtracting the average single-trial voltage during the 200 
ms window preceding stimulus onset. To identify the channel with a maximal representation of the early 
N1 potential, the minimum voltage between 40 and 120 ms following stimulus presentation was identified. 
Given that inspection of individual data indicated systematic N1 latency differences between different 
subgroups (see Figure 1b), N1 peak amplitude was measured at the first local minimum between 40 and 120 
ms of the across-condition average Oz trace. Due to the low-dimensional nature of the data, a two-sided 
paired t-test was performed to test for potential differences as a function of scene category. 
 
Spectral power. Time frequency transformation was performed using superlets (Moca, Barzan, Nagy-
Dabacan, & Muresan, 2021) for linearly spaced frequencies between 1 and 40 Hz (step size: 1 Hz). Superlets 
reflect a frequency-wise combination of Morlet wavelets of varying cycle widths, providing a frequency-
adaptive temporal resolution of spectral power estimates. This analysis used a base wavelet of 3 cycles, with 
additive combination of cycle lengths defining a superlet, as implemented in FieldTrip. 
 
Statistical analyses. All statistical tests used a canonical two-sided 5% criterion to assess significance of 
effects. Individual outliers were identified when condition differences exceeded three scaled median 
absolute standard deviations, and are reported in light grey in the RainCloud (Allen, Poggiali, Whitaker, 
Marshall, & Kievit, 2019) distribution plots. Where a p-value of approx. zero is reported, no more precise 
estimate could be obtained. 
 
Multivariate partial least squares analyses. For data with a high-dimensional structure, we performed 
multivariate partial least squares (PLS) analyses (Krishnan, Williams, McIntosh, & Abdi, 2011; McIntosh, 
Bookstein, Haxby, & Grady, 1996), specifically ‘task PLS’. Task PLS begins by calculating a between-subject 
covariance matrix (COV) between conditions and each neural value (e.g., time-space-frequency power), 
which is then decomposed using singular value decomposition (SVD). This yields a left singular vector of 
experimental condition weights (U), a right singular vector of brain weights (V), and a diagonal matrix of 
singular values (S). Task PLS produces orthogonal latent variables (LVs) that reflect optimal relations 
between experimental conditions and the neural data. For each LV (ordered strongest to weakest in S), a 
data pattern results which depicts the strongest available relation between brain data and experimental 
conditions. Significance of detected relations was assessed using 1000 permutation tests of the singular value 
corresponding to the LV. A subsequent bootstrapping procedure indicated the robustness of within-LV 
neural saliences across 1000 resamples of the data (Efron & Tibshirani, 1986). By dividing each brain weight 
(from V) by its bootstrapped standard error, we obtained “bootstrap ratios” (BSRs) as normalized 
robustness estimates. We generally thresholded BSRs at values of ±3.00 (∼99.9% confidence interval). Note 
that for visualization, a threshold BSR of 3 is initially applied to the input matrix, setting all subthreshold 



data to zero. Due to this convention, average BSRs are sensitive to the relative extent of super-threshold 
data across the averaged dimension. We also obtained a summary measure of each participant’s robust 
expression of a particular LV’s pattern (a within-person “brain score”) by multiplying the vector of brain 
weights (V) from each LV by each participant’s vector of neural values (P), producing a single within-subject 
value: Brain score = VP´.  
 
Testing specific spatio-temporal hypotheses within PLS models. When specific time periods were 
tested, only data falling within the respective time window were included in the PLS. Similarly, where 
hypotheses specified sensor locations, we constrained the input data to those sensors. For analyses targeting 
fronto-central voltage and theta power, any channel whose labels did not start with ‘A’, ‘F’, or ‘C’ were set 
to zero. For analyses targeting posterior alpha power, any channel whose labels did not start with ‘P’, or ‘O’ 
were set to zero. For hypotheses that were unspecific to the approximate timing of potential changes, we 
included the epochs ranging from -1s to 2 s around stimulus onset. It is possible that this time window also 
includes responses and potential condition differences therein. The provided data did not contain single-
trial RTs to allow for a closer inspection of response-aligned signals however. 
 
Within-subject centering. To visually emphasize condition differences, we use within-subject centering 
across repeated measures conditions by subtracting individual cross-condition means and adding global 
group means. For these visualizations, only the mean of the dependent values directly reflects the original 
units of measurement, as individual data points by construction do not reflect between-subject variation 
averaged across conditions. This procedure equals the creation of within-subject standard errors (Loftus & 
Masson, 1994). Within-subject centering is exclusively used for display and is noted in legends. 
 
Data and script availability. All used code and data are available as DataLad (Halchenko et al., 2021) 
datasets, separated into the raw BIDS data (https://gin.g-node.org/juliankosciessa/eegmp_data), 
preprocessing code and data (https://gin.g-node.org/juliankosciessa/eegmp_preproc; doi: 10.12751/g-
node.6nhr1y), and analysis code, data and figures (https://gin.g-node.org/juliankosciessa/eegmp_analysis; 
doi: 10.12751/g-node.98d6ks). Select code and data have been submitted in the format requested by the 
EEGmanypipelines committee. 
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