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0. Abstract 14 
 15 
The ability to prioritize task-relevant inputs enables efficient behavior across the human lifespan. However, contexts 16 
in which feature relevance is ambiguous require dynamic exploration rather than stable selectivity. Although both 17 
cognitive flexibility and stability generally decline with ageing, it is unknown whether the aging brain differentially 18 
adjusts to changing uncertainty. Here, we comprehensively assess the dynamic range of uncertainty adjustments across 19 
the adult lifespan (N = 100) via behavioral modelling and a theoretically informed set of human neuroimaging 20 
signatures (EEG-, fMRI-, and pupil-based). As a group, older adults show a broadscale dampening of neuro-21 
computational uncertainty adjustments. In support of a “maintenance” account of brain aging, older individuals with 22 
more young-like neural recruitment were better able to select task-relevant features, also in a Stroop task with low 23 
perceptual demands. Our results highlight neural mechanisms whose maintenance plausibly enables flexible task set, 24 
perception, and decision computations across the adult lifespan. 25 
   26 



 3 

1. Introduction 27 
 28 
The ability to prioritize goal-related signals in perceptual and decision processes is fundamental for adaptive behaviors. 29 
Some contexts facilitate this process by designating features to which we should selectively attend 1. Many contexts 30 
do not convey feature relevance, however. Such elevated uncertainty plausibly shifts demands from an emphasis on 31 
focused feature selection to a broad, but less precise sensitivity to diverse candidate features 2,3. An adaptive system 32 
should track the degree of such contextual uncertainty, and leverage it to tune perception, guide decisions, and select 33 
actions. Conversely, failure to do so may result in maladaptive cognition and behaviors 4,5. Here, we examine whether 34 
a potential failure to adapt to varying uncertainty is a key characteristic of healthy human aging.  35 
 36 
Behavioral observations support aging-related deficits in uncertainty-guided processing. In contexts that cue task-37 
relevant dimensions of compound stimuli, older adults remain sensitive also to irrelevant dimensions 6,7, indicating 38 
challenges in stable feature-selection 8-11. Conversely, older adults show inflexibility when contexts require dynamic 39 
feature switches 12-14, and incur substantial “fade-out” costs when transitioning from dynamic to stable single-feature 40 
contexts 15. Such observations suggest that older adults may be stuck in a suboptimal ‘middle ground’ that neither 41 
affords stable task selectivity when uncertainty is low, nor flexible task sensitivity in dynamic or uncertain contexts. 42 
Although age-related deficits in using uncertainty variations to guide behavior have been observed to impair 43 
computational (learning rate) adjustments 16, it remains unclear whether such underutilization arises from challenges 44 
in estimating latent uncertainty, or from leveraging adequate estimates to adjust computations. Crucially, for 45 
uncertainty to provide a principled and comprehensive lens on aging-related adaptivity constraints, first evidence is 46 
required to establish whether and/or how neural responses to uncertainty differ in the older adult brain. 47 
 48 
Although the neural mechanisms of uncertainty resolution remain vague 17, emerging models point to interacting 49 
systems that define task sets, alter perception, and guide decision formation 18-20. Task set management has been 50 
commonly tied to fronto-parietal cortex 20,21, although more recent evidence also suggests underappreciated thalamic 51 
deep brain contributions especially in uncertain contexts 22,23. When task sets are limited to specific sensory features, 52 
perceptual networks in turn appear to specifically tune to relevant information by combining distractor inhibition 24 53 
with target enhancement 25. In contrast, high uncertainty may facilitate sensitivity to multiple features via broad 54 
excitability increases 26. Shifts between such regimes may be orchestrated by diffuse neurotransmitter systems that 55 
adjust computational precision to changing demands 2. In young adults, we observed such an integrated response to 56 
rising uncertainty 27, encompassing increased fronto-thalamic BOLD activation, increased pupil diameter as an index 57 
of neuromodulation 28, and upregulated EEG-based cortical excitability. These results indicate that multiple systems 58 
interact to enable a large dynamic response range to contextual uncertainty variations. Whether and how these systems 59 
change in their response to uncertainty across the adult lifespan has not been tested, however. 60 
 61 
It is plausible that joint declines of these systems are a feature of brain aging, constraining the dynamic range of 62 
uncertainty adjustments. Senescence is characterized by various systemic alterations including diminished prefrontal 63 
cortex function 29, metabolic decreases in fronto-thalamic control networks 30-32, progressive deterioration of 64 
subcortical neurotransmitter systems 33-35, reduced cortical inhibition 36,37, as well as structural declines of coordinating 65 
nodes such as the thalamus 38,39. However, beyond findings that older adults’ brain activity changes less alongside 66 
varying demands in general 40-42, whether older brains also adjust less to contextual uncertainty is unknown. Beyond 67 
the group-level, the “maintenance account of aging” further posits that cognitive deficits with senescence emerge 68 
when neural resources become insufficient to meet demands, and that older adults with more “young-like” signatures 69 
should be most likely to maintain function. We test this account by examining whether a reduced engagement of 70 
neural mechanisms expressed in younger adults constrains the range of uncertainty adaptation in older age. 71 
 72 
Here, we use decision modelling and multimodal neuroimaging (EEG, fMRI, pupillometry) in 47 younger and 53 73 
older adults to investigate how contextual uncertainty impacts neural and behavioral computations across the adult 74 
lifespan. Participants performed a decision task involving a compound stimulus, for which we overtly manipulated 75 
uncertainty regarding the stimulus feature(s) that would be relevant for decisions. By assessing multiple a priori 76 
signatures that were observed in younger adults’ response to contextual uncertainty 27, we observed that older adults 77 
exhibited a relatively dampened modulation of decision processes and neural responses to varying contextual 78 
uncertainty. Older adults expressing more flexible feature selection were marked by more “young-like” modulation of 79 
neural signatures, providing first evidence for a brain maintenance account in the context of uncertainty processing. 80 
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2. Results 81 
2.1 Older adults express constrained uncertainty modulation of evidence integration. 82 

 83 
During EEG and fMRI acquisition, participants performed a Multi-Attribute Attention Task ("MAAT" 27; Figure 1a). 84 
In the task, participants had to visually sample a moving display of squares that were characterized by four feature 85 
dimensions, with two exemplars each: color (red/green), movement direction (left/right), size (large/small), and color 86 
saturation (high/low). Stimuli were presented for three seconds, after which participants were probed as to which of 87 
the two exemplars of a single feature was most prevalent. Probe uncertainty was parametrically manipulated using 88 
valid pre-stimulus cues that indicated the feature set from which a probe would be selected with equal probability. 89 
Higher uncertainty necessitated extra-dimensional attention shifts 43,44 between up to four features (“target load”) to 90 
optimally inform probe-related decisions. Younger and older adults performed the task above chance level for all 91 
visual features (Figure S1-1).  92 
 93 

 94 
To characterize probe-related decision processes, we fitted a hierarchical drift-diffusion model 45 (HDDM) to 95 
participants’ responses. The model estimates (a) the drift rate at which evidence is integrated towards a decision bound, 96 
(b) the distance between (correct and incorrect) decision bounds, and (a) the non-decision time of visual probe 97 
processing and response execution. Across sessions and age groups the best fitting models (see Figure S1-2) 98 

Figure 1. Older adults show constrained decision-related adjustments to rising uncertainty. (a) Participants performed a 
Multi-Attribute Attention Task (“MAAT”) during which they had to sample up to four visual features of a compound stimulus 
for a subsequent perceptual decision. On each trial, participants were first validly cued to a target probe set (here motion 
direction and color). The compound stimulus (which always included all four features) was then presented for 3 s and was 
followed by a probe of one of the cued features (here, whether red or green color was more prevalent in the stimulus). The 
number of pre-stimulus cues manipulated the level of uncertainty. Behavioral data were modelled with a drift diffusion 
model, in which evidence is presumed to be successively accumulated with a ‘drift rate’ towards either of two bounds, here 
representing the options of a single feature. (b) Drift rate estimates from behavioral modelling. Older adults exhibited 
reduced accumulation rates for single targes (top) and were marked by more limited drift reductions under elevated 
uncertainty (bottom). Individual data points represent averages across EEG and fMRI sessions. Table S1 reports within-group 
statistics. (c) The Centro-parietal positivity (CPP) provides an a priori neural signature of evidence accumulation. Older adults 
exhibited reduced integration slops for single targes (top) and were marked by constrained load-related slope shallowing 
under elevated uncertainty (bottom). To illustrate age- and condition-differences in integration slope, responses have been 
rescaled to the [0, 1] range for visualization. Fig. S1-3 shows original traces. ***a p=0e-10 ***b p = 5.1e-10 ***c p = 4.5e-05 
***d p = 2.8e-05. 
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consistently included uncertainty-based variations in all three parameters. Here, we focused on the drift rate of 99 
evidence integration based on its close association to stimulus processing 27. Text S1-2 reports the remaining 100 
parameters. With rising uncertainty, evidence drift rates decreased for both age groups, indicating that uncertainty 101 
constrained decision evidence for the probed feature also in older adults. Crucially, relative to younger adults, older 102 
participants’ drift rates were reduced following single-attribute cues, and decreased less under increasing uncertainty 103 
(Figure 1b). These drift rate effects remained present when only features with age-matched single-target accuracies 104 
were included in the model (see Text S1-3). However, we also observed that for features matched in single-target 105 
accuracy, older adults suffered stronger accuracy decreases under uncertainty than younger adults, in line with a larger 106 
behavioral cost of transitioning into more uncertain task contexts (see Text S1-4). 107 

 108 
We assessed the convergence of behavioral results with an a priori neural proxy signature of evidence integration, the 109 
slope of the EEG’s centroparietal positive potential (CPP 46; Figure 1c, see also Figure S1-4) prior to decision 110 
responses. Consistent with behavioral modeling, CPP slopes were flatter for older relative to younger participants in 111 
single-target contexts, and older adults’ uncertainty-related modulation of CPP slopes was minimal (Figure 1c). In line 112 
with both indices capturing latent evidence integration, CPP and drift estimates were inter-individually related (Fig. 113 
S1-4), both for single targets (r(93) = 0.51, 95%CI = 114 
[0.34,0.64], p = 1.4e-07; age-partial: r(92) = 0.34, 95%CI = 115 
[0.14,0.5] p = 9.3e-04), and their uncertainty modulation 116 
(r(93) = 0.45, 95%CI = [0.27,0.59], p = 6.1e-06; age-partial: 117 
r(92) = 0.27, 95%CI = [0.08,0.45], p = 0.01; Fig S1-4c). 118 
We also probed contralateral beta power as a signature of 119 
motor response preparation 47 (Figure S1-5) but did not 120 
observe clear relations to drift rate or CPP estimates (Text 121 
S1-5), suggesting that it may be a less suitable evidence 122 
integration index here. Taken together, older adults’ 123 
decisions were marked by reduced evidence integration 124 
rates for single targets, and more constrained drift rate 125 
reductions under uncertainty.  126 
 127 
2.2 Decoding indicates uncertainty-induced trade-128 

offs between feature specificity and sensitivity.  129 
 130 
Higher single-target drift rates and larger evidence 131 
reductions may reflect an adaptive trade-off between 132 
reduced single-feature specificity and elevated sensitivity 133 
to multiple features under higher uncertainty. However, as 134 
decisions were tied to the probed feature, they cannot 135 
elucidate how unprobed feature dimensions were 136 
processed. To clarify this question, we performed fMRI 137 
decoding analyses. We created pairwise classifiers that 138 
targeted the sensory representation of each feature’s 139 
prevalent option (e.g., left vs. rightward movement) based 140 
on BOLD responses in visual cortex (see Methods: fMRI 141 
decoding of prevalent feature options). The prevalent option of 142 
individual features could be decoded above chance during 143 
the approximate time of stimulus presentation (Fig. 2a). 144 
Robust decoding was observed for all cued features except 145 
for luminance, for which discrimination was also 146 
behaviorally most challenging (Fig. S1-1). Above-chance 147 
decoding was not observed for uncued feature options, 148 
except for motion discrimination (see Fig. 2b), indicating 149 
that participants mainly discriminated task-relevant 150 
feature options 18.  151 

Figure 2. Decoding of prevalent options from visual cortex. (a) 
Decoding accuracy for cued and uncued features across age 
groups (means +/- SEM). Grey shading indicates the approximate 
timing of stimulus presentation considering the temporal lag in 
the hemodynamic response. Lines indicate periods of 
statistically significant differences from chance decoding 
accuracy (50%) as assessed by cluster-based permutation tests. 
The inset highlights the visual cortex mask from which signals 
were extracted for decoding. (b) Same as in a, but for each 
feature probe. (c) Decoding accuracy for probed (left) and 
unprobed (center) features as a function of the number of cued 
targets; and decoding accuracy for al features as a function of 
age (right). Accuracy was averaged across significant decoding 
timepoints for cued features. Means +- within-subject SEM for 
(un)probed features, means +- SEM for age analysis. 
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Next, we assessed uncertainty and age effects on decoding accuracy. First, we applied classifiers to trials in which 152 
target features were probed, which mirrors the participant’s behavioral task. A linear mixed effects model indicated a 153 
significant reduction in decoding accuracy with increasing uncertainty (β = -0.18, SE = 0.05, t = -3.56, p = 0.00037; 154 
Figure 2c), as well as reduced decoding accuracy for older adults (β = -0.862, SE = 0.31, t = -2.77, p = 0.007), but no 155 
significant interaction (p = 0.76). Crucially, such uncertainty-related precision losses may trade-off against sensitivity 156 
to other cued, but ultimately unprobed features. We tested this possibility by considering decoding accuracy across all 157 
unprobed features in any given trial. This analysis indicated that uncertainty indeed slightly increased decoding accuracy 158 
across unprobed features (β = 0.077, SE = 0.026, t = 2.94, p = 0.0033). Decoding accuracy trended to be lower in 159 
older compared to younger adults (β = -0.259, SE = 0.134, t = -1.92, p = 0.0574). Again, no significant interaction 160 
was observed (p = 0.434). Consistent with opposing uncertainty effects on probed and unprobed features, no 161 
significant uncertainty effect was indicated when all trials were considered (β = 0.012, SE = 0.024, t = 0.53, p = 162 
0.5927), but decoding accuracy was overall reduced in older adults (β = -.41, SE = 0.144, t = -2.84, p = 0.0056). 163 
Decoding analyses thus suggest that rising uncertainty in both age groups increased sensitivity to more diverse features, 164 
albeit at the cost of reduced precision for single features. 165 
 166 
2.3 MAAT performance generalizes to feature selection in the context of low perceptual demands.  167 
 168 

Relative to younger adults, older adults appear to have encoded less single-target evidence for downstream decisions. 169 
However, the multifaceted demands of the MAAT do not resolve whether such differences arise from task 170 
idiosyncrasies such as the necessity to resolve high perceptual uncertainty for each feature, or whether they capture 171 
differences related to flexible feature selection. To adjudicate between these accounts, participants also performed a 172 
Stroop task, which probes the capacity to inhibit prepotent responses to one of two feature dimensions (the color vs. 173 
semantics) of a presented word 48. We recorded voice responses as a more naturalistic modality for older adults 49. To 174 
estimate speech onset times (SOTs ~ reaction times), we labeled the onset of voiced responses in each trial’s recording 175 
(see methods). Labeled SOTs showed high validity as the neural CPP peaked immediately prior to SOTs (Fig. 3a). In 176 
line with the Stroop literature 49, older adults incurred larger behavioral interference costs (Fig. 3b) than younger adults. 177 
These behavioral results were mirrored by neural CPP slopes: interference shallowed pre-response CPP slopes in both 178 
age groups, but to a larger extent in older adults, and the CPP shallowing tracked behavioral interference costs across 179 
subjects (Fig. S3-1). Crucially, participants with higher MAAT drift rates were also faster responders in the incongruent 180 
condition (Fig. 3c), pointing to a better capacity to inhibit prepotent responses. Notably, relations between MAAT 181 
drift rates and SOTs in the Stroop interference condition (r(93) = -0.65, 95%CI = [-0.75,-0.51], p = 1.2e-12) held after 182 
controlling for age and SOTs in the congruent condition (r(91) = -0.29, 95%CI = [-0.46,-0.09], p = 0.01), whereas the 183 
opposite was not observed (congruent SOTs-drift: r(93) = -0.4, 95%CI = [-0.56,-0.22], p = 4.7e-05, age- and incongruent 184 
SOT-partial: r(91) = 0.13, 95%CI = [-0.07,0.33], p = 0.2). As such, selective inhibition of interfering features, as 185 
opposed to processing speed, appears to be a key contributor to individual MAAT drift rates. Taken together, these 186 
findings suggest that individual and age differences in MAAT drift rates generalize to flexible feature selection also in 187 
perceptually unambiguous contexts. 188 

Figure 3. MAAT evidence integration relates to prepotent response inhibition. (a) Centro-Parietal 
Positivity (CPP) traces and speech signal power suggest high validity for the semi-automatically labeled 
speech onset times (SOTs). The CPP trace has been averaged across age and congruency conditions and 
displays means +/- SEM. The inset shows the mean EEG topography during the final 300 ms prior to speech 
onset. (b) The voiced Stroop task indicated robust interference costs whose magnitude was larger in older 
adults. Table S1 reports within-group statistics. (c) Participants with larger MAAT drift rates showed faster 
responses to incongruent trials (e.g., responding blue to the inset stimulus), also after accounting for 
categorical age (squares: younger; diamonds: older) and covariation with congruent SOTs (see main text). 
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2.4 Theta power and pupil diameter upregulation with elevated uncertainty dampens in older age. 189 
 190 
Our results indicate age-related constraints in adjusting perceptual and decision processes to varying uncertainty. To 191 
test whether such constraints are rooted in a reduced neural uncertainty response as expected under a maintenance 192 
account of cognitive & brain aging, we assessed several a priori signatures (see 27) during MAAT stimulus presentation 193 
by means of two-group task partial-least-squares analyses (PLS, see methods). First, we assessed the effect of 194 
uncertainty on frontocentral theta power, an index of cognitive control 50 and exploration under uncertainty 51. 195 
Uncertainty increased theta power in both age groups (Figure 4a), but to a lesser extent in older adults (Figure 4a). 196 
Next, we assessed phasic changes in pupil diameter, a signature that covaries with neuromodulation and arousal 52,53, 197 
has been related to frontal control 2,27,54-56, and is sensitive to rising demands 57 such as dynamically changing and 198 
uncertain contexts 58,59. Once again, we observed that uncertainty increased pupil diameter in both age groups, with 199 
more constrained upregulation in older adults (Fig. 4b). The extent of pupil modulation was related to individual theta 200 
power increases (r(98) = .28, 95%CI = [0.09, 0.46], p = 0.005; age-partial: r(97) = .19, 95%CI = [0, 0.38], p = 0.05), 201 
indicating a joint uncertainty modulation. These results indicate that both age groups were sensitive to rising 202 
uncertainty, albeit older adults to a dampened extent. 203 
 204 

 205 
2.5 Only younger adults adjust posterior cortical excitability to varying uncertainty. 206 
 207 
Elevated contextual uncertainty may impact perception by altering sensory excitability. To test this, we focused on 208 
three indices related to cortical excitability: alpha power, sample entropy, and aperiodic 1/f slopes 27,60. We constrained 209 
analyses to posterior sensors as we targeted perceptual changes in visual-parietal cortices. Text S5-3 reports whole-210 

Figure 4. Uncertainty increases theta power (a) and pupil diameter (b) across the adult lifespan. 
(Center) Age comparison of linear uncertainty effects (~age x target load interaction). Red bars indicate 
significant within-group differences from zero, as assessed via one-sample t-tests (see Table S1). Both 
signatures exhibited significant uncertainty modulation in younger, as well as older adults, with constrained 
modulation in older adults. For condition-wise plots, see Fig. S4-1. Statistics refer to unpaired t-tests. 
(Right) Time series data are presented as means +- within-subject S.E.Ms. Orange shading in a indicates 
the timepoints across which data have been averaged for the task PLS. Black lines in b indicate time points 
exceeding a BSR of 3 (~99% threshold). The uncertainty modulation of pupil diameter occurred on top of a 
general pupil constriction due to stimulus-evoked changes in luminance upon task onset (see inset), that 
by stimulus design did not systematically differ across load levels. YA = Younger adults. OA = Older adults.   
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channel analyses. In younger adults, we observed uncertainty effects on all three signatures (Fig. 5 a-c), akin to those 211 
we previously reported 27. In line with putative excitability increases, posterior alpha power decreased alongside 212 
uncertainty, while sample entropy increased and the aperiodic spectral slope shallowed. However, we found no 213 
evidence of a similar modulation in older adults for any of the probed signatures (Fig. 5, see also Fig. S4-1), indicating 214 
a failure of the aged system to adjust to changing uncertainty demands. Such failure may be rooted in a less precise 215 
estimation of environmental uncertainty in the aged neural system 16. However, we reduced inference demands in our 216 
design by providing overt cues on each trial, and keeping the cue set identical for eight consecutive trials. In line with 217 
age-invariant sensitivity to uncertainty cues, we observed comparable increases in pre-stimulus alpha power alongside 218 
uncertainty in both age groups (Fig. S5-1, see also Text S5-1). However, these increases were not associated with 219 
subsequent behavioral drift rate adjustments (Fig. S5-1 and Text S5-1), arguing against a direct role of pre-stimulus 220 
alpha power in adjudicating uncertainty. We additionally considered the steady-state visual evoked potential (SSVEP) 221 
as a proxy of bottom-up processing. Despite robust and comparable SSVEPs in both age groups, we found no 222 
evidence of uncertainty modulation in either group (Fig. S5-2, see also Text S5-2). Given that the 30 Hz flicker 223 
frequency was shared between all stimulus features, this suggests that sensory processing of the compound stimulus 224 
was similar between uncertainty conditions and age groups. Taken together, our results suggest that older adults may 225 
have suffered from a relative failure to adjust perceptual excitability to changing feature relevance, rather than 226 
insensitivity to the level of contextual uncertainty or an inability to encode the undifferentiated stimulus. 227 
 228 
2.6  BOLD modulation links neuro-behavioral responses to uncertainty across the adult lifespan. 229 
 230 
Finally, we investigated uncertainty-related changes in whole-brain fMRI BOLD activation during stimulus 231 
presentation, extending sensitivity also to subcortical areas like the thalamus that are considered critical for managing 232 
contextual uncertainty 27,61,62. We targeted associations between uncertainty-related BOLD modulation and the a priori 233 
neurobehavioral signatures (i.e., uncertainty-induced changes in drift rate, theta power, pupil diameter, alpha power, 234 

Figure 5. Only younger adults upregulate cortical excitability under increased uncertainty. (a-c) Results of 
task partial least squares (PLS) models, assessing relations of alpha power (a), sample entropy (b) and aperiodic 
1/f slope (c) to uncertainty. (Left) Topographies indicate mean bootstrap ratios (BSR). Orange dots indicate the 
sensors across which data were averaged for data visualization. (Center) Age comparison of linear uncertainty 
effects (~age x uncertainty interaction). All three signatures exhibited a significant uncertainty modulation in 
younger, but not in older adults. For condition-wise plots, see Fig. S4-1. Statistics refer to unpaired t-tests. Table 
S1 reports within-group statistics. (Right) Time series data are presented as means +- within-subject S.E.Ms. 
Orange shading in a indicates the timepoints across which data have been averaged for the respective task-
PLS. Black lines in b indicate time points exceeding a BSR of 3 (~99% threshold). YA = Younger adults. OA = 
Older adults. 
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1/f slopes, and sample entropy) using a multivariate behavioral PLS analysis (see Methods; Text S4-1 reports a task PLS 235 
targeting the main effect of uncertainty). We identified a single latent variable (LV; permuted p < 1e-3) with positive 236 
frontoparietal and thalamic loadings, and most pronounced negative loadings in medial PFC and hippocampus (Fig. 237 
6a, Table S5). Older adults expressed this LV to a lesser extent than younger adults as indicated by lower “Brainscores” 238 
(Fig. 6b), indicating dampened BOLD modulation in the face of changing uncertainty. Brainscores were associated 239 
with the latent score of neurobehavioral input signatures (Fig. 6c), such that less dampened, more “young-like” BOLD 240 
modulation tracked a larger modulation of decision, EEG, and pupil signatures. Fig. 6d depicts relations to the 241 
individual signatures of the model: across age groups, greater BOLD modulation corresponded to larger drift rate 242 
reductions, more pronounced theta power and pupil diameter increases, and larger excitability modulation (see Fig. 243 
S6-2 for more signatures). As the PLS model leveraged variance both from within and across age groups, we used 244 

Figure 6: Multivariate relation of EEG/pupil/behavioral signatures to fMRI BOLD uncertainty modulation. (a) Results of a 
behavioral partial least squares (PLS) analysis linking linear changes in BOLD activation to interindividual EEG, pupil, and 
behavioral differences. Table S4 lists peak coordinates. (b) The multivariate expression of BOLD changes alongside rising 
uncertainty was reduced in older compared with younger adults. Table S1 reports within-group statistics. (c) Individual 
Brainscore differences were related to a behavioral composite score, also after accounting for age covariation. Squares = 
younger individuals; diamonds = older individuals. (d) Signature-specific Brainscore relations. All signature estimates refer to 
linear changes as a function of uncertainty. Error bars represent bootstrapped 95% confidence values. (e) Major nuclei and 
projection zones in which behavioral relations are maximally reliable according to average Bootstrap ratios (red) and the 
percentage of voxels in each subregion exceeding a BSR of 3. See Methods for abbreviations. Strongest expression is observed 
in nuclei that project to fronto-parietal cortical targets. (f) Visualization of uncertainty modulation for the mediodorsal nucleus, 
a “higher order” nucleus, and the LGN, a visual relay nucleus. Traces display mean +/- SEM. The green shading indicates the 
approximate stimulus presentation period after accounting for the delay in the hemodynamic response function. 

 



 10 

linear-mixed-effects models to assess the age-dependency of these relations. These models indicated that all a priori 245 
signatures, except sample entropy and 1/f modulation, predicted Brainscores also after accounting for the shared main 246 
effects of age (Table 1). This indicates a robust coupling of uncertainty effects between most signatures, while aligning 247 
with unobserved posterior excitability modulation in older adults. Control analyses indicate that within- and between-248 
group differences in BOLD uncertainty sensitivity are robust to matched feature accuracy (see Fig S6-3). 249 

 250 
Predictor t-value p-value partial η2 

Behavioral score 4.6043 1.3237e-05 0.1962 
age -6.3809 7.0027e-09 0.3192 

Drift mod. -4.3334 3.7435e-05 0.2308 
age -3.9624 0.00014637 0.2006 

Pupil mod. 4.171 6.86e-05 0.1622 
age -6.7664 1.2032e-09 0.3375 

Theta mod. 4.2533 5.0549e-05 0.2005 
age -4.8662 4.6912e-06 0.2471 

Alpha mod. 3.2185 0.0017805 0.1294 
age -4.934 3.569e-06 0.2589 

1/f mod. 0.10914 0.91333 1.4502e-04 
age -6.7591 1.2445e-09 0.3574 

SampEn mod. 1.5944 0.11429 0.0279 
age -6.7385 1.368e-09 0.3390 

 251 
Table 1: Summary of Brainscore predictors, while controlling for categorical age. Separate 252 
linear-mixed-effects models assessed effects of target signature, categorical age, and age x 253 
signature interactions on Brainscores. We observed no significant interaction in any of the models 254 
(all p > 0.05), pointing to consistent relations across age groups; therefore, all reported models 255 
only include main effects of signature and age. Fig. S6-2 reports similar results using partial 256 
regressions. Degrees of freedom: 92 in all models. 257 

 258 
Behavioral relations were closely tracked by BOLD activation in the thalamus. To obtain insights within this 259 
differentiated structure, we assessed regional loadings based on projection zones and nucleus segmentations (Fig, 6e). 260 
Loadings were highest in subregions with frontoparietal projections, including the mediodorsal nucleus (Fig. 6f). In 261 
contrast, a traditional visual “relay” nucleus of the thalamus, the lateral geniculate nucleus, did not show sensitivity to 262 
our uncertainty manipulation (Fig. 6f). This indicates a specificity of thalamic effects that coheres with functional 263 
subdivisions and alludes to uncertainty-invariant sensory processing of the compound stimulus. These results indicate 264 
that the mediodorsal thalamus contributes to maintained uncertainty adjustments across the adult lifespan. 265 
 266 
3. Discussion 267 
 268 
Managing uncertainty is vital for navigating the flux of life. While some environments prioritize specific inputs over 269 
others, many contexts provide few, contrasting, or ambiguous cues. Here, we show that healthy older adults exhibit 270 
markedly dampened adaptations to such varying uncertainty across coupled EEG/fMRI/pupil signatures. Our results 271 
extend observations that older adults rely less on uncertainty representations to guide internal computations 16 by 272 
characterizing several plausible neural mechanisms for this shortfall. Our results suggest that such computational 273 
constraints do not exclusively stem from an inadequate sensitivity to latent uncertainty, as the current task provides 274 
overt uncertainty cues that are similarly processed by both age groups. Rather, our findings support the “maintenance” 275 
account of cognitive/brain aging 63 in the context of uncertainty processing, wherein individuals with a more “young-276 
like” neural recruitment are better able to leverage comparable uncertainty estimates to adjust ongoing computations. 277 
 278 
3.1 Fronto-thalamic circuits may enable stable and flexible feature selection across the adult lifespan. 279 
 280 
As part of the neural uncertainty response, we observed a behaviorally relevant upregulation of anterior cingulate 281 
cortex (ACC) BOLD activation and (presumably ACC-based 50,64) mediofrontal theta power. By charting the 282 
progression through multiple task contexts 65-67, the ACC can estimate contextual volatility 68 and uncertainty 16,69 to 283 
guide exploration of alternative goals, strategies, and attentional targets 51,70-72. Non-human animal studies suggest that 284 
high contextual uncertainty switches ACC dynamics to a state of increased excitability 60,73 and stochastic activity 74, 285 
which benefits concurrent sensitivity to alternate task rules 75. Also in humans, the ACC is sensitive to stimulus features 286 
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before they behaviorally guide task strategies 74,76, suggesting that the ACC contributes to the exploration of alternate 287 
features whose significance remains contextually unclear 77,78. While our results align with such contribution, we also 288 
localize high uncertainty sensitivity in the mediodorsal (MD) thalamus, which aligns with the MD being a key partner 289 
for selecting, switching, and maintaining cortical task representations 23,79,80 especially in uncertain contexts 27,61,62 . 290 
Extrapolating from this emerging perspective, the MD-ACC circuit may regulate task set stability vs. flexibility 81-83 291 
according to contextual demands (Fig. 7a). Partial evidence for such a notion is provided by models that link task 292 
stability in low-uncertainty contexts to thalamic engagement 84. The current observations suggest a complementary 293 
thalamic role in task flexibility. While maintained across the adult lifespan, BOLD and theta power signals indicated 294 
that such MD-ACC upregulation was dampened in older adults 85,86. Indeed, the ACC network is particularly 295 
susceptible to age-related metabolic declines 30-32 as well as structural atrophy 38. Retained ACC function on the other 296 
hand is a hallmark of cognitive reserve 87, relates to maintained executive function 32, and is a fruitful target of cognitive 297 
interventions in older adults 86. Given evidence of a key role of the MD thalamus in the coordination of ACC 298 
engagement and our observations of reduced MD-ACC sensitivity to uncertainty in older age, the thalamus may be 299 
an underappreciated site for cascading age-related dysfunctions in cognitive stability and flexibility.  300 
 301 

 302 
Figure 7. Schematic model summary. (a) In static contexts, prefrontal-hippocampal networks may signal high 303 
confidence in the current task state, which enables stable task sets, and a targeted processing of specific sensory 304 
representations with high acuity. Such selective processing of specific task-relevant features benefits their efficient 305 
evidence integration. Such selectivity would be suboptimal in contexts with uncertain or changing task sets, 306 
however. An MD-ACC circuit may track such uncertainty and enhance stochastic task set flexibility in changing or 307 
ambiguous contexts. In coordination with posterior-parietal cortex, this feasibly enables more diverse albeit less 308 
precise perceptual representations. (b) The neural system of younger adults adjusts system dynamics to the degree 309 
of environmental uncertainty. Observed effects align with a switch between a specific processing of individual 310 
features with high acuity, as exemplified by a single, deep attractor (blue), and a more diverse, if less precise 311 
processing of multiple features, as indicated by a more unstable attractor landscape (red; see also Thiele & 312 
Bellgrove, 2018). In contrast, the aged neural system may be stuck in a suboptimal middle ground that affords 313 
neither stable precision, nor flexible imprecision. mPFC = medial prefrontal cortex; HC = hippocampus; ACC = 314 
anterior cingulate cortex; MD = mediodorsal thalamus. 315 

 316 
3.2 Neuromodulation may sculpt the dynamic range of uncertainty adjustments. 317 
 318 
Neurotransmitter systems provide a candidate substrate for computational adjustments under uncertainty. In response 319 
to rising uncertainty, phasic norepinephrine release can sensitize the system to incoming signals 88,89 by increasing 320 
neuro-behavioral activation 52,90. Pupil diameter, an index that is partially sensitive to noradrenergic drive 57, robustly 321 
increases alongside uncertainty during learning 58 and attention 91, environmental exploration 92, and change points in 322 
dynamic environments 58,59,93. Here, we show that such pupil sensitivity to rising uncertainty is retained across the 323 
adult lifespan, but dampens in older age. Such dampening hints at declining noradrenergic responsiveness in older age 324 
94,95, arising from reduced LC integrity 96, and/or decreased LC recruitment. Notably, pupil sensitivity to volatility has 325 
been related to the ACC as a primary source of cortical LC input 28,97, and joint modulation of ACC and pupil diameter 326 
in uncertain, or dynamic contexts has consistently been observed in studies that record both signals 2,27,54-56. While 327 
future studies need to clarify the origin of constrained pupil adjustments in older age, our results affirm the relevance 328 
of the extended LC system for attentional function across the lifespan 95. In contrast to noradrenaline’s potential role 329 
in sensitizing, cholinergic innervation from the basal forebrain may foster selectivity via cortical gain increases 98,99. 330 
Notably, basal forebrain BOLD activation decreased under uncertainty alongside regions such as the medial prefrontal 331 
cortex and hippocampus, that are sensitive to subjective confidence 100, suggesting that it may support stable task 332 
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beliefs when contextual uncertainty is low 101 (Fig. 7a). The constrained BOLD modulation observed in older adults 333 
may thus point to reduced task set stability in low-uncertainty contexts (Fig. 7b) 11, plausibly as a consequence of 334 
limited cholinergic gain control. Similar ideas have been captured in the cortical gain theory of aging 102, but in the 335 
context of the dopamine system 34,103. Computational models and pharmacological studies indeed support a role of 336 
dopamine availability in task set stability and flexibility 104,105. For instance, amphetamines (operating via the DA 337 
system) can in- and decrease task set stability in ACC 106,107 depending on baseline dopamine levels in frontoparietal 338 
cortex and thalamus 108. Given that our results align with the fronto-thalamic system being a primary neural substrate 339 
of cognitive aging 34,39,109, the potential contribution of age-related	dopamine depletion to constrained uncertainty 340 
adjustments deserves future clarification. 341 
 342 
3.3 Excitability modulation as a mechanism for acuity/sensitivity trade-offs. 343 
  344 
Uncertain contexts motivate perceptual exploration over a selective encoding of individual features. Our decoding 345 
results indeed indicate that higher uncertainty benefitted sensitivity to multiple features at the cost of feature-specific 346 
precision (or “acuity”) 3. Perceptual representations thus depend on whether a feature is included in the active task set 347 
18, but also on the degree of competition with other task set elements for neuro-computational resources 110. 348 
Excitability changes in parietal/sensory cortices provide a candidate mechanism that may implement such trade-off. 349 
One index of (decreased) cortical excitability is alpha power. Models suggest that broad alpha power increases reflect 350 
active inhibition of irrelevant information 111-115, while alpha desynchronization in target regions can selectively 351 
disinhibit relevant information 38. With advancing adult age, alpha power decreases, which has been linked to inhibitory 352 
deficits in older age 95,116-119 . Such filtering deficits manifest in maladaptive sensitivity also to irrelevant 7 and non-353 
salient features 120 of compound stimuli 6 that impairs selective feature discrimination as required in the MAAT. 354 
Decoding and decision analyses indeed indicate that older adults’ task performance suffered from reduced single-355 
feature information, in line with filtering deficits 121,122. Alpha desynchronization, in turn, is thought to reflect increased 356 
sensitivity to multiple input features 26. In line with such a notion, stronger alpha suppression is observed when 357 
multiple features must be jointly tracked 123,124 and retained in working memory 125-128. In addition to alpha power, 358 
aperiodic dynamics such as the spectral slope of the EEG potential 129 and signal entropy 130 may also index levels of 359 
neural excitability 60,129. Here, we reproduce the observation that uncertainty increases excitability as assessed by all 360 
three signatures in younger adults 27, but find no evidence for a comparable modulation in older adults. Such deficits 361 
in excitability modulation may be rooted in age-related declines of GABAergic inhibition 36,37. Aperiodic dynamics at 362 
rest suggest increased excitatory tone with increased adult age 131-133, including in the current sample 130. Our results 363 
suggest that such imbalances 134 may constrain the dynamic range of excitability modulation in older age, both on- 364 
and off-task 42,135. Ultimately, this may point to dual challenges in implementing selective attention, as well as diverse 365 
feature coding under uncertainty (Fig. 7b). It is also possible that the consistently high level of perceptual uncertainty, 366 
i.e., the difficulty of arbitrating between the two options of each feature, was overly taxing especially for older 367 
participants. Based on behavioral and decoding results, younger adults were indeed better able to arbitrate feature-368 
specific options at all levels of contextual uncertainty, relative to older adults. In this scenario, preserved excitability 369 
modulation may be observed if individual features were perceptually less uncertain. However, performance on the 370 
Stroop task suggests that age-related deficits (and individual differences) in feature selection generalize to contexts of 371 
low perceptual uncertainty. As perceptual uncertainty resolution relies on partially dissociable circuits from those 372 
implicated in feature selection 136-138, future work needs to chart the ability to resolve either type across the lifespan. 373 
 374 
3.4 Conclusion 375 
 376 
Changes in uncertainty provide an important signal that adaptive systems can use to adjust their internal computations. 377 
We highlight that such uncertainty-related adjustments present a principled challenge for the aged brain. Our results 378 
thus argue that uncertainty provides a useful lens on healthy cognitive aging and underline the need to better 379 
understand the integrated neural basis of estimating and computationally leveraging uncertainty signals across the 380 
lifespan.  381 
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Online Methods 382 
 383 
Sample. 47 healthy young adults (mean age = 25.8 years, SD = 4.6, range 18 to 35 years; 25 women) and 53 healthy 384 
older adults (mean age = 68.7 years, SD = 4.2, range 59 to 78 years; 28 women) performed a perceptual decision task 385 
during 64-channel active scalp EEG acquisition. 42 younger adults and all older adults returned for a subsequent 3T 386 
fMRI session. Participants were recruited from the participant database of the Max Planck Institute for Human 387 
Development, Berlin, Germany (MPIB). Participants were right-handed, as assessed with a modified version of the 388 
Edinburgh Handedness Inventory 139, and had normal or corrected-to-normal vision. Participants reported to be in 389 
good health with no known history of neurological or psychiatric incidences, and were paid for their participation (10 390 
€ per hour). All older adults had Mini Mental State Examination (MMSE) 140,141 scores above 25. All participants gave 391 
written informed consent according to the institutional guidelines of the Deutsche Gesellschaft für Psychologie 392 
(DGPS) ethics board, which approved the study. 393 
 394 
Procedure: EEG Session. Participants were seated 60 cm in front of a monitor in an acoustically and electrically 395 
shielded chamber with their heads placed on a chin rest. Following electrode placement, participants were instructed 396 
to rest with their eyes open and closed, each for 3 minutes. Afterwards, participants performed a Stroop task (see 397 
below), followed by the visual attention task instruction & practice (see below), the performance of the task and a 398 
second Stroop assessment. Stimuli were presented on a 60 Hz 1920x1080p LCD screen (AG Neovo X24) using 399 
PsychToolbox 3.0.11 142-144. The session lasted ~3 hours. EEG was continuously recorded from 60 active (Ag/AgCl) 400 
electrodes using BrainAmp amplifiers (Brain Products GmbH, Gilching, Germany). Scalp electrodes were arranged 401 
within an elastic cap (EASYCAP GmbH, Herrsching, Germany) according to the 10% system 145, with the ground 402 
placed at AFz. To monitor eye movements, two additional electrodes were placed on the outer canthi (horizontal 403 
EOG) and one electrode below the left eye (vertical EOG). During recording, all electrodes were referenced to the 404 
right mastoid electrode, while the left mastoid electrode was recorded as an additional channel. Online, signals were 405 
digitized at a sampling rate of 1 kHz. In addition to EEG, we simultaneously tracked eye movements and assessed 406 
pupil diameter using EyeLink 1000+ hardware (SR Research, v.4.594) with a sampling rate of 1kHz. 407 
 408 
Procedure: MRI session. A second testing session included structural and functional MRI assessments. First, 409 
participants took part in a short refresh of the visual attention task (“MAAT”, see below) instructions and practiced 410 
the task outside the scanner. Then, participants were placed in the TimTrio 3T scanner and were instructed in the 411 
button mapping. We collected the following sequences: T1w, task (4 runs), T2w, resting state, DTI, with a 15 min 412 
out-of-scanner break following the task acquisition. The session lasted ~3 hours. Whole-brain task fMRI data (4 runs 413 
á ~11,5 mins, 1066 volumes per run) were collected via a 3T Siemens TrioTim MRI system (Erlangen, Germany) 414 
using a multi-band EPI sequence (factor 4; TR = 645 ms; TE = 30 ms; flip angle 60°; FoV = 222 mm; voxel size 415 
3x3x3 mm; 40 transverse slices. The first 12 volumes (12 × 645 ms = 7.7 sec) were removed to ensure a steady state 416 
of tissue magnetization (total remaining volumes = 1054 per run). A T1-weighted structural scan (MPRAGE: TR = 417 
2500 ms; TE = 4.77 ms; flip angle 7°; FoV = 256 mm; voxel size 1x1x1 mm; 192 sagittal slices) and a T2-weighted 418 
structural scan were also acquired (GRAPPA: TR = 3200 ms; TE = 347 ms; FoV = 256 mm; voxel size 1x1x1 mm; 419 
176 sagittal slices). 420 
 421 
The multi-attribute attention task (“MAAT”). The MAAT requires participants to sample up to four visual 422 
features in a compound stimulus, in the absence of systematic variation in bottom-up visual stimulation (see Figure 423 
1). Participants were shown a dynamic square display that jointly consisted of four attributes: color (red/green), 424 
movement direction (left, right), size (small, large) and saturation (low, high). The task incorporates features from 425 
random dot motion tasks which have been extensively studied in both animal models 146-148 and humans 46,149. 426 
Following the presentation of these displays, a probe queried the prevalence of one of the four attributes in the display 427 
(e.g., whether the display comprised a greater proportion of either smaller or larger squares) via 2-AFC (alternative 428 
forced choices). Prior to stimulus onset, a varying number of valid cues informed participants about the active feature 429 
set, out of which one feature would be chosen as the probe. We parametrically manipulated uncertainty regarding the 430 
upcoming probe by systematically varying the number of cues between one and four. 431 

The perceptual difficulty of each feature was determined by (a) the fundamental feature difference between 432 
the two alternatives and (b) the sensory evidence for each alternative in the display. For (a) the following values were 433 
used: high (RGB: 128, 255, 0) and low saturation green (RGB: 192, 255, 128) and high (RGB: 255, 0, 43) and low 434 
saturated red (RGB: 255, 128, 149) for color and saturation, 5 and 8 pixels for size differences and a coherence of .2 435 
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for directions. For (b) the proportion of winning to losing option (i.e., sensory evidence) was chosen as follows: color: 436 
60/40; direction: 80/20; size: 65/35; luminance: 60/40. Parameter difficulty was established in a pilot population, with 437 
the aim to produce above-chance accuracy for individual features. Parameters were held constant across age groups 438 
to retain identical bottom-up inputs. 439 

The experiment consisted of four runs of ~10 min, each including eight blocks of eight trials (i.e., a total of 440 
32 trial blocks; 256 trials). The size and constellation of the cue set was held constant within eight-trial blocks to reduce 441 
set switching and working memory demands. At the onset of each block, the valid cue set, composed of one to four 442 
target features, was presented for 5 s. Each trial was structured as follows: recuing phase (1 s), fixation phase (2 s), 443 
dynamic stimulus phase (3 s), probe phase (incl. response; 2 s); ITI (un-jittered; 1.5 s). At the offset of each block, 444 
participants received performance feedback for 3 s. The four attributes spanned a constellation of 16 feature 445 
combinations (4x4), of which presentation frequency was matched within participants. The size and type of the cue 446 
set was pseudo-randomized: Within each run, every set size was presented once, but never directly following a block 447 
of the same set size. In every block, each feature in the active set acted as a probe in at least one trial. Moreover, any 448 
attribute served as a probe equally often across blocks. The dominant options for each feature were counterbalanced 449 
across all trials of the experiment. To retain high motivation during the task and encourage fast and accurate responses, 450 
we instructed participants that one response would randomly be drawn at the end of each block; if this response was 451 
correct and faster than the mean RT during the preceding block, they would earn a reward of 20 cents. However, we 452 
pseudo-randomized feedback such that all participants received an additional fixed payout of 10 € per session. This 453 
bonus was paid at the end of the second session, at which point participants were debriefed.  454 

 455 
Stroop performance. Participants performed a voiced Stroop task before and after the main MAAT task in the EEG 456 
session. EEG signals were acquired during task performance. One subject did not complete the second Stroop 457 
acquisition. In the Stroop task, we presented three words (RED, GREEN, BLUE) either in the congruent or 458 
incongruent display color. Each of the two runs consisted of 81 trials, with fully matched combinations, i.e., 1/3rd 459 
congruent trials. Stimuli were presented for two seconds, followed by a one-second ITI with a centrally presented 460 
fixation cross. Participants were instructed to indicate the displayed color as fast and accurately as possible following 461 
stimulus onset by speaking into a microphone. During analysis, speech on- and offsets were pre-labeled automatically 462 
using a custom tool (Computer-Assisted Response Labeler (CARL); doi: 10.5281/zenodo.7505622), and manually 463 
inspected and refined by one of two trained labelers. Voiced responses were manually labeled using the CARL GUI. 464 
Speech onset times (SOTs) were highly reliable across two Stroop sessions preceding and following the MAAT (r = 465 
.83, p =5e-26), as were individual interference costs (r = .64, p =5e-13). We therefore averaged SOTs estimates across 466 
both runs, where available. For EEG analyses, single-trial time series were aligned to SOTs, and averaged according 467 
to coherence conditions. The centroparietal positive potential was extracted from channel POz, at which we observed 468 
a maximum potential during the average 300 ms prior to SOT (see inset in Fig. 3a).   469 

 470 
Behavioral estimates of probe-related decision processes. Sequential sampling models, such as the drift-diffusion 471 
model, have been used to characterize evolving perceptual decisions in 2-alternative forced choice (2AFC) random 472 
dot motion tasks 46, memory retrieval 150, and probabilistic decision making 151. We estimated individual evidence 473 
integration parameters within the HDDM 0.6.0 toolbox 45 to regularize relatively sparse within-subject data with group 474 
priors based on a large number of participants. Premature responses faster than 250 ms were excluded prior to 475 
modeling, and the probability of outliers was set to 5%. 7000 Markov-Chain Monte Carlo samples were sampled to 476 
estimate parameters, with the first 5000 samples being discarded as burn-in to achieve convergence. We judged 477 
convergence for each model by visually assessing both Markov chain convergence and posterior predictive fits. 478 
Individual estimates were averaged across the remaining 2000 samples for follow-up analyses. We fitted data to correct 479 
and incorrect RTs (termed ‘accuracy coding‘ in Wiecki, et al. 45). To explain differences in decision components, we 480 
compared four separate models. In the ‘full model’, we allowed the following parameters to vary between conditions: 481 
(i) the mean drift rate across trials, (ii) the threshold separation between the two decision bounds, (iii) the non-decision 482 
time, which represents the summed duration of sensory encoding and response execution. In the remaining models, 483 
we reduced model complexity, by only varying (a) drift, (b) drift + threshold, or (c) drift + NDT, with a null model 484 
fixing all three parameters. For model comparison, we first used the Deviance Information Criterion (DIC) to select 485 
the model which provided the best fit to our data. The DIC compares models based on the maximal log-likelihood 486 
value, while penalizing model complexity. The full model provided the best fit to the empirical data based on the DIC 487 
index (Figure S1c) in both the EEG and the fMRI session, and in either age group. Posterior predictive checks 488 
indicated a suitable recovery of behavioral effects using this full solution. Given the observation of high reliability 489 
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between sessions 27 (see also Figure S1-2), we averaged parameter estimates across the EEG and fMRI sessions for 490 
the main analysis. In contrast with previous work 27, we did not constrain boundary separation estimates 152 here given 491 
our observation of CPP threshold differences in older adults (see Figure S1-3a). See also Text 1-2 for a brief discussion 492 
of NDT and boundary separation. 493 

 494 
EEG preprocessing. Preprocessing and analysis of EEG data were conducted with the FieldTrip toolbox 495 
(v.20170904) 153 and using custom-written MATLAB (The MathWorks Inc., Natick, MA, USA) code. Offline, EEG 496 
data were filtered using a 4th order Butterworth filter with a passband of 0.5 to 100 Hz. Subsequently, data were 497 
downsampled to 500 Hz and all channels were re-referenced to mathematically averaged mastoids. Blink, movement 498 
and heart-beat artifacts were identified using Independent Component Analysis (ICA; 154) and removed from the 499 
signal. Artifact-contaminated channels (determined across epochs) were automatically detected using (a) the FASTER 500 
algorithm 155, and by (b) detecting outliers exceeding three standard deviations of the kurtosis of the distribution of 501 
power values in each epoch within low (0.2-2 Hz) or high (30-100 Hz) frequency bands, respectively. Rejected channels 502 
were interpolated using spherical splines 156. Subsequently, noisy epochs were likewise excluded based on a custom 503 
implementation of FASTER and on recursive outlier detection. Finally, recordings were segmented to stimulus onsets 504 
and were epoched into separate trials. To enhance spatial specificity, scalp current density estimates were derived via 505 
4th order spherical splines 156 using a standard 1005 channel layout (conductivity: 0.33 S/m; regularization: 1^-05; 14th 506 
degree polynomials). 507 
 508 
Electrophysiological estimates of probe-related decision processes. 509 
 510 
Centro-Parietal Positivity (CPP). The Centro-Parietal Positivity (CPP) is an electrophysiological signature of 511 
internal evidence-to-bound accumulation 46,152,157. We probed the task modulation of this established signature and 512 
assessed its convergence with behavioral parameter estimates. To derive the CPP, preprocessed EEG data were low-513 
pass filtered at 8 Hz with a 6th order Butterworth filter to exclude low-frequency oscillations, epoched relative to 514 
response and averaged across trials within each condition. In accordance with the literature, this revealed a dipolar 515 
scalp potential that exhibited a positive peak over parietal channel POz (Fig. 1c). We temporally normalized individual 516 
CPP estimates to a condition-specific baseline during the final 250 ms preceding probe onset. As a proxy of evidence 517 
drift rate, CPP slopes were estimates via linear regression from -250 ms to -100 ms surrounding response execution, 518 
while the average CPP amplitude from -50 ms to 50 ms served as an indicator of decision thresholds (i.e., boundary 519 
separation; e.g., 152).  520 
 521 
Contralateral mu-beta. Decreases in contralateral mu-beta power provide a complementary, effector-specific 522 
signature of evidence integration 47,152. We estimated mu-beta power using 7-cycle wavelets for the 8-25 Hz range with 523 
a step size of 50 ms. Spectral power was time-locked to probe presentation and response execution. We re-mapped 524 
channels to describe data recorded contra- and ipsi-lateral to the executed motor response in each trial, and averaged 525 
data from those channels to derive grand average mu-beta time courses. Individual average mu-beta time series were 526 
baseline-corrected using the -400 to -200 ms prior to probe onset, separately for each condition. For contralateral 527 
motor responses, remapped sites C3/5 and CP3/CP5 were selected based on the grand average topography for 528 
lateralized response executions (see inset in Figure S2a). Mu-beta slopes were estimated via linear regression from -529 
250 ms to -50 ms prior to response execution, while the average power from -50 ms to 50 ms indexed decision 530 
thresholds (e.g., 152). 531 
 532 
Electrophysiological indices of top-down modulation during sensation 533 
 534 
Low-frequency alpha and theta power. We estimated low-frequency power via a 7-cycle wavelet transform (linearly 535 
spaced center frequencies; 1 Hz steps; 2 to 15 Hz). The step size of estimates was 50 ms, ranging from -1.5 s prior to 536 
cue onset to 3.5 s following stimulus offset. Estimates were log10-transformed at the single trial level 158, with no 537 
explicit baseline-correction. 538 
 539 
Steady State Visual Evoked Potential (SSVEP). The SSVEP characterizes the phase-locked, entrained visual 540 
activity (here 30 Hz) during dynamic stimulus updates (e.g., 159). These features differentiate it from induced broadband 541 
activity or muscle artefacts in similar frequency bands. We used these properties to normalize individual single-trial 542 
SSVEP responses prior to averaging: (a) we calculated an FFT for overlapping one second epochs with a step size of 543 
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100 ms (Hanning-based multitaper) and averaged them within each uncertainty condition; (b) spectrally normalized 544 
30 Hz estimates by subtracting the average of estimates at 28 and 32 Hz, effectively removing broadband effects (i.e., 545 
aperiodic slopes), and; (c) we subtracted a temporal baseline -700 to -100 ms prior to stimulus onset. Linear uncertainty 546 
effects on SSVEPs were assessed by paired t-tests on linear uncertainty slope estimates across posterior channel 547 
averages. 548 
 549 
Time-resolved sample entropy. Sample entropy 160 quantifies the irregularity of a time series of length N by assessing 550 
the conditional probability that two sequences of m consecutive data points will remain similar when another sample 551 
(m+1) is included in the sequence (for a visual example see Figure 1A in 130).  Sample entropy is defined as the inverse 552 
natural logarithm of this conditional similarity: The similarity criterion (r) defines the tolerance within which two points 553 
are considered similar and is defined relative to the standard deviation (~variance) of the signal (here set to r = .5). 554 
We set the sequence length m to 2, in line with previous applications 130. An adapted version of sample entropy 555 
calculations implemented in the mMSE toolbox (available from https://github.com/LNDG/mMSE) was used 556 
130,161,162, wherein entropy is estimated across discontinuous data segments to provide time-resolved estimates. The 557 
estimation of scale-wise entropy across trials allows for an estimation of coarse scale entropy also for short time-bins 558 
(i.e., without requiring long, continuous signals), while quickly converging with entropy estimates from continuous 559 
recordings 161. To remove the influence of posterior-occipital low-frequency rhythms on entropy estimates, we notch-560 
filtered the 8-15 Hz alpha band using 6th order Butterworth filter prior to the entropy calculation 130. Time-resolved 561 
entropy estimates were calculated for 500 ms windows from -1 s pre-stimulus to 1.25 s post-probe with a step size of 562 
150 ms. As entropy values are implicitly normalized by the variance in each time bin via the similarity criterion, no 563 
temporal baseline correction was applied.  564 
 565 
Aperiodic (1/f) slopes. The aperiodic 1/f slope of neural recordings is closely related to the sample entropy of 566 
broadband signals 130 and has been suggested as a proxy for cortical excitation-inhibition balance 129. Spectral estimates 567 
were computed by means of a Fast Fourier Transform (FFT) over the final 2.5 s of the presentation period (to exclude 568 
onset transients) for linearly spaced frequencies between 2 and 80 Hz (step size of 0.5 Hz; Hanning-tapered segments 569 
zero-padded to 20 s) and subsequently averaged. Spectral power was log10-transformed to render power values more 570 
normally distributed across participants. Power spectral density (PSD) slopes were estimated using the fooof toolbox 571 
(v1.0.0-dev) using default parameters 163.  572 
 573 
Pupil diameter. Pupil diameter was recorded during the EEG session using EyeLink 1000 at a sampling rate of 1000 574 
Hz and was analyzed using FieldTrip and custom-written MATLAB scripts. Blinks were automatically indicated by 575 
the EyeLink software (version 4.40). To increase the sensitivity to periods of partially occluded pupils or eye 576 
movements, the first derivative of eye-tracker-based vertical eye movements was calculated, z-standardized, and 577 
outliers >= 3 STD were removed. We additionally removed data within 150 ms preceding or following indicated 578 
outliers. Finally, missing data were linearly interpolated, and data were epoched to 3.5 s prior to stimulus onset to 1 s 579 
following stimulus offset. We quantified phasic arousal responses via the rate of change of pupil diameter traces as 580 
this measure (i) has higher temporal precision and (ii) has been more strongly associated with noradrenergic responses 581 
than the overall response 164. We downsampled pupil time series to 100 Hz. For visualization, but not statistics, we 582 
smoothed pupil traces using a moving average median of 300 ms. 583 
 584 
fMRI-based analyses 585 
 586 
Preprocessing of functional MRI data. fMRI data were preprocessed with FSL 5 (RRID:SCR_002823) 165,166. Pre-587 
processing included motion correction using McFLIRT, smoothing (7mm) and high-pass filtering (.01 Hz) using an 588 
8th order zero-phase Butterworth filter applied using MATLAB’s filtfilt function. We registered individual functional 589 
runs to the individual, ANTs brain-extracted T2w images (6 DOF), to T1w images (6 DOF) and finally to 3mm 590 
standard space (ICBM 2009c MNI152 nonlinear symmetric) 167 using nonlinear transformations in ANTs 2.1.0 168 (for 591 
one participant, no T2w image was acquired and 6 DOF transformation of BOLD data was preformed directly to the 592 
T1w structural scan). We then masked the functional data with the ICBM 2009c GM tissue prior (thresholded at a 593 
probability of 0.25), and detrended the functional images (up to a cubic trend) using SPM12’s spm_detrend. We also 594 
used a series of extended preprocessing steps to further reduce potential non-neural artifacts 135,169. Specifically, we 595 
examined data within-subject, within-run via spatial independent component analysis (ICA) as implemented in FSL-596 
MELODIC 170. Due to the high multiband data dimensionality in the absence of low-pass filtering, we constrained 597 
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the solution to 30 components per participant. Noise components were identified according to several  key  criteria:  598 
a) Spiking  (components  dominated  by  abrupt  time  series  spikes);  b) Motion (prominent  edge or “ringing” effects, 599 
sometimes [but not always] accompanied by large time series spikes); c) Susceptibility and flow artifacts (prominent 600 
air-tissue boundary or sinus  activation;  typically  represents  cardio/respiratory  effects); d) White matter (WM) and 601 
ventricle  activation 171; e) Low-frequency signal  drift 172; f) High power in high-frequency ranges unlikely to represent 602 
neural activity (≥ 75% of total spectral power present above .10 Hz;); and g) Spatial distribution (“spotty” or 603 
“speckled” spatial pattern that appears scattered randomly across ≥ 25% of the brain, with few if any clusters with ≥ 604 
80 contiguous voxels). Examples of these various components we typically deem to be noise can be found in 173. By 605 
default, we utilized a conservative set of rejection criteria; if manual classification decisions were challenging due to 606 
mixing of “signal” and “noise” in a single component, we generally elected to keep such components. Three 607 
independent raters of noise components were utilized; > 90% inter-rater reliability was required on separate data 608 
before denoising decisions were made on the current data. Components identified as artifacts were then regressed 609 
from corresponding fMRI runs using the regfilt command in FSL. To reduce the influence of motion and physiological 610 
fluctuations, we regressed FSL’s 6 DOF motion parameters from the data, in addition to average signal within white 611 
matter and CSF masks. Masks were created using 95% tissue probability thresholds to create conservative masks. Data 612 
and regressors were demeaned and linearly detrended prior to multiple linear regression for each run. To further 613 
reduce the impact of potential motion outliers, we censored significant DVARS outliers during the regression as 614 
described by 174. We calculated the ‘practical significance’ of DVARS estimates and applied a threshold of 5 175. The 615 
regression-based residuals were subsequently spectrally interpolated during DVARS outliers as described in 174 and 616 
176. BOLD analyses were restricted to participants with both EEG and MRI data available (N = 42 YA, N = 53 OA). 617 
 618 
fMRI decoding of prevalent feature options. We performed a decoding analysis to probe the extent to which 619 
participants’ visual cortices contained information about the prevalent option of each feature. N = 2 older adults with 620 
two missing runs each were not included in this analysis due to the limited number of eligible trials. We trained a 621 
decoder based on BOLD signals from within a visual cortex mask that included Jülich parcellations ranging from V1 622 
to area MT. We resliced the mask to 3mm and created an intersection mask with the cortical grey matter mask used 623 
throughout the remaining analyses. For classification analyses, we used linear support-vector machines (SVM) 177 624 
implemented with libsvm (www.csie.ntu.edu.tw/~cjlin/libsvm). As no separate session was recorded, we trained 625 
classifiers based on all trials (across uncertainty conditions) for which the target feature was probed, therefore 626 
necessitating but not exhaustively capturing trials on which the respective feature was also cued. By experimental 627 
design, the number of trials during which a target feature was probed was matched across uncertainty levels. We used 628 
a bootstrap classification approach in the context of leave-one-out cross-validation to derive single-trial estimates of 629 
decoding accuracy. To increase the signal-to-noise ratio for the decoders, we averaged randomly selected trials into 630 
three folds (excluding any trial used for testing) and concatenated two pseudo-trials from each condition to create the 631 
training set. Trained decoders were then applied to the left-out trial. This train-and-test procedure was randomly 632 
repeated 100 times to create bootstrapped single-trial estimates. Finally, decoding accuracy was averaged across trials 633 
based on condition assignment (e.g., whether a given feature was cued or uncued). To assess above-chance decoding 634 
accuracy in time, we used univariate cluster-based permutation analyses (CBPAs). These univariate tests were 635 
performed by means of dependent samples t-tests, and cluster-based permutation tests 178 were performed to control 636 
for multiple comparisons. Initially, a clustering algorithm formed clusters based on significant t-tests of individual data 637 
points (p <.05, two-sided; cluster entry threshold) with the spatial constraint of a cluster covering a minimum of three 638 
neighboring channels. Then, the significance of the observed cluster-level statistic (based on the summed t-values 639 
within the cluster) was assessed by comparison to the distribution of all permutation-based cluster-level statistics. The 640 
final cluster p-value was assessed as the proportion of 1000 Monte Carlo iterations in which the cluster-level statistic 641 
was exceeded. Cluster significance was indicated by p-values below .025 (two-sided cluster significance threshold). To 642 
test uncertainty and age effects, we initially fitted linear mixed effects models with random intercepts and fixed effects 643 
of uncertainty, age, and an uncertainty x age interaction. As no significant interaction was indicated for any of the 644 
models (probed: p = 0.760; unprobed: p = 0.434; all: p = 0.625), we removed the interaction term for the main effect 645 
estimation. We constrained analysis to timepoints for which the cluster-based permutation analysis indicated above-646 
chance decoding for cued features. We focused on probed and unprobed feature trials, as they are matched in trial 647 
number at each uncertainty level. 648 
 649 
BOLD modulation by uncertainty and relation to external variables. We conducted a 1st level analysis using 650 
SPM12 to identify beta weights for each condition separately. Design variables included stimulus presentation (4 651 
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volumes; separate regressors for each uncertainty condition; parametrically modulated by sequence position), onset 652 
cue (no mod.), and probe (2 volumes, parametric modulation by RT). Design variables were convolved with a 653 
canonical HRF, including its temporal derivative as a nuisance term. Nuisance regressors included 24 motion 654 
parameters 179, as well as continuous DVARS estimates. Autoregressive modelling was implemented via FAST. Output 655 
beta images for each uncertainty condition were finally averaged across runs. We investigated the multivariate 656 
modulation of the BOLD response at the 2nd level using PLS analyses (see Multivariate partial least squares analyses). 657 
Specifically, we probed the relationship between voxel-wise 1st level beta weights and uncertainty within a task PLS. 658 
Next, we assessed the relationship between task-related BOLD signal changes and interindividual differences in the 659 
joint modulation of decision processes, cortical excitability, and pupil modulation by means of a behavioral PLS. For 660 
this, we first calculated linear slope coefficients for voxel-wise beta estimates. Then, we included the behavioral 661 
variables reported on the left of Figure 6c. For visualization, spatial clusters were defined based on a minimum distance 662 
of 10 mm, and by exceeding a size of 25 voxels. We identified regions associated with peak activity based on 663 
cytoarchitectonic probabilistic maps implemented in the SPM Anatomy Toolbox (Version 2.2c) 180. If no assignment 664 
was found, the most proximal assignment to the peak coordinates was reported. 665 
 666 
Temporal dynamics of thalamic engagement. To visualize the uncertainty modulation of thalamic activity, we 667 
extracted signals within a binary mask of thalamic divisions extracted from the Morel atlas 181. Preprocessed BOLD 668 
timeseries were segmented into trials, spanning the period from the stimulus onset to the onset of the feedback phase. 669 
Given a time-to-peak of a canonical hemodynamic response function (HRF) between 5-6 seconds, we designated the 670 
3 second interval from 5-8 seconds following the stimulus onset trigger as the stimulus presentation interval, and the 671 
2 second interval from 3-5 s as the fixation interval, respectively. Single-trial time series were then temporally 672 
normalized to the temporal average during the approximate fixation interval.  673 
 674 
Thalamic loci of behavioral PLS. To assess the thalamic loci of most reliable behavioral relations, we assessed 675 
bootstrap ratios within two thalamic masks. First, for nucleic subdivisions, we used the Morel parcellation scheme as 676 
consolidated and kindly provided by Hwang et al. 182 for 3 mm data at 3T field strength. The abbreviations are as 677 
follows: AN: anterior nucleus; VM: ventromedial; VL: ventrolateral; MGN: medial geniculate nucleus; LGN: lateral 678 
geniculate nucleus; MD: mediodorsal; PuA: anterior pulvinar; LP: lateral-posterior; IL: intra-laminar; VA: ventral-679 
anterior; PuM: medial pulvinar; Pul: pulvinar proper; PuL: lateral pulvinar. Second, to assess cortical white-matter 680 
projections we considered the overlap with seven structurally derived cortical projection zones suggested by Horn & 681 
Blankenburg 183, which were derived from a large adult sample (N = 169). We binarized continuous probability maps 682 
at a relative 75% threshold of the respective maximum probability, and re-sliced masks to 3mm (ICBM 2009c 683 
MNI152).  684 
 685 
Statistical analyses 686 
 687 
Outlier handling. For each signature, we defined outliers at the subject-level as individuals within their respective 688 
age group whose values (e.g., estimates of linear modulation) exceeded three scaled median absolute deviations (MAD) 689 
as implemented in MATLAB. Such individual data points were winsorized prior to statistical analysis. For repeated 690 
measures analyses, such individuals were removed prior to statistical assessment. 691 
 692 
Linear uncertainty effect estimates. To estimate the linear uncertainty modulation of dependent variables, we 693 
calculated 1st level beta estimates (y = intercept+β*target load+e) and assessed the slope difference from zero at the 694 
within-group level (see Table S1) using two-sided paired t-tests. Similarly, we compared linear uncertainty effect 695 
estimates between groups using two-sides unpaired t-tests. We assessed the relation of individual linear load effects 696 
between measures of interest via Pearson correlations.  697 
 698 
Within-subject centering. To visually emphasize effects within participants, we use within-subject centering across 699 
repeated measures conditions by subtracting individual cross-condition means and adding global group means. For 700 
these visualizations, only the mean of the dependent values directly reflects the original units of measurement, as 701 
individual data points by construction do not reflect between-subject variation averaged across conditions. This 702 
procedure equals the creation of within-subject standard errors 184. Within-subject centering is exclusively used for 703 
display and explicitly noted in the respective legends. 704 
 705 
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Multivariate partial least squares analyses. For data with a high-dimensional structure, we performed multivariate 706 
partial least squares analyses 185,186. To assess main effect of probe uncertainty, we performed Task PLS analyses. Task 707 
PLS begins by calculating a between-subject covariance matrix (COV) between conditions and each neural value (e.g., 708 
time-space-frequency power), which is then decomposed using singular value decomposition (SVD). This yields a left 709 
singular vector of experimental condition weights (U), a right singular vector of brain weights (V), and a diagonal 710 
matrix of singular values (S). Task PLS produces orthogonal latent variables (LVs) that reflect optimal relations 711 
between experimental conditions and the neural data. We ran a version of task PLS in which group means were 712 
removed from condition means to highlight how conditions were modulated by group membership, i.e., condition 713 
and condition-by-group effects. To examine multivariate relations between neural data and other variables of interest, 714 
we performed behavioral PLS analyses. This analysis initially calculates a between-subject correlation matrix (CORR) 715 
between (1) each brain index of interest (e.g., 1st level BOLD beta values) and (2) a second ‘behavioral’ variable of 716 
interest (note that although called behavioral, this variable can reflect any variable of interest, e.g., behavior, pupil 717 
diameter, spectral power). CORR is then decomposed using singular value decomposition (SVD): SVDCORR = USV´, 718 
which produces a matrix of left singular vectors of cognition weights (U), a matrix of right singular vectors of brain 719 
weights (V), and a diagonal matrix of singular values (S). For each LV (ordered strongest to weakest in S), a data 720 
pattern results which depicts the strongest available relation between brain data and other variables of interest. 721 
Significance of detected relations of both PLS model types was assessed using 1000 permutation tests of the singular 722 
value corresponding to the LV. A subsequent bootstrapping procedure indicated the robustness of within-LV neural 723 
saliences across 1000 resamples of the data 187. By dividing each brain weight (from V) by its bootstrapped standard 724 
error, we obtained “bootstrap ratios” (BSRs) as normalized robustness estimates. We generally thresholded BSRs at 725 
values of ±3.00 (∼99.9% confidence interval). We also obtained a summary measure of each participant’s robust 726 
expression of a particular LV’s pattern (a within-person “brain score”) by multiplying the vector of brain weights 727 
(V) from each LV by each participant’s vector of neural values (P), producing a single within-subject value: Brain 728 
score = VP´.  729 
 730 
Data and code availability. Experiment code is available from https://git.mpib-berlin.mpg.de/LNDG/multi-731 
attribute-task. Analysis code, primary EEG, fMRI, and behavioral data will be made available upon publication (for 732 
younger adults see https://osf.io/ug4b8/). Structural MRI data are exempt from public sharing according to obtained 733 
informed consent. All data are available from the corresponding authors upon reasonable request. 734 
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Figure S1-1. Average accuracy across target load 20 
conditions. Younger (red) and older adults (grey) 21 
performed the task above chance for all attributes that 22 
were probed. Statistics are based on one sample t-tests 23 
against chance level (.5 in this 2AFC task). *** p < .001. 24 
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 26 
Figure S1-2. Age-related uncertainty adjustments to decision processes. (a) DIC-based 27 
model comparison indicates that a model, including uncertainty modulation of drift rates, non-28 
decision times, and boundary separation provides the best group fit to the behavioral data. (b) 29 
Posterior predictive checks for the full model (shown for the EEG session). Negative RTs 30 
indicate incorrect responses. Model-based (“posterior predictive”) values were sampled 50 times 31 
within each subject and condition (as implemented in the HDDM package), and probability 32 
density (100 RT bins) was estimated first within-subject across all samples, and then averaged 33 
across participants. In empirical data, probability densities were estimated across all participants 34 
due to the sparse within-subject RT counts. (c) Uncertainty modulation of HDD parameter 35 
estimates, averaged across sessions. Statistics refer to paired t-tests of linear slopes against zero. 36 
Data are within-subject centered. (d) Age comparison of single-target parameter estimates (left) 37 
and linear uncertainty effects (~age x target load interaction). Statistics refer to unpaired t-tests. 38 

 39 
Text 1-2. Uncertainty and age effects on non-decision time and boundary separation. The main analyses 40 
targeted drift rate as the main parameter of interest. Given that the best-fitting model (Figure S1-2ab) included 41 
uncertainty variation also for non-decision times as well as boundary separation, we explored the potential variation 42 
of the latter two parameters with age and uncertainty (Figure S1-2c). In contrast with younger adults, older adults had 43 
significantly longer non-decision times, and larger boundary separation, suggesting that more evidence was collected 44 
prior to committing to a choice. There is some evidence from 2AFC tasks that older adults adopt decision boundaries 45 
that are wider than the boundaries of younger adults (Starns & Ratcliff, 2010, 2012) [but see (McGovern et al., 2018)], 46 
which may signify increased response caution . In both age groups, we observed uncertainty-related increases in non-47 
decision times, albeit more constrained in older adults, as well as similar increases in boundary separation as a function 48 
of rising uncertainty (see Figure S1-2d). Notably, the uncertainty effect on boundary separation was not consistently 49 
reproduced by either the integration threshold of the domain-general CPP (Figure S1-4b), or the effector-specific 50 
contralateral beta power threshold (Figure S1-5d), highlighting uncertainty regarding the true effect on behavioral 51 
response caution, or neural proxy signatures thereof. These discrepancies deserve further attention in future work and 52 
may suggest that a model with alternative parameter constellations could provide a more coherent description. 53 
Convergence of the current model with our previous results in younger adults (Kosciessa et al., 2021) ultimately argues 54 
for robust drift rate inferences that were independent from the specific model choice. 55 
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 56 
 57 
Figure S1-3. Drift rate differences do not arise from accuracy ceiling or floor effects. (a) Difficulty with 58 
selectively distinguishing individual features is a major component of the task, which may contribute to age differences 59 
in single-target drift rates. While on average, younger adults’ single-target responses were more accurate than those of 60 
older adults, this differed between features (see Fig. S1-1). Excluding the most accurate (‘best’) feature for younger 61 
adults and the least accurate (‘worst’) feature for older adults matched groups regarding their accuracy in the single-62 
target condition. In this scenario, older adults showed more pronounced accuracy decreases under uncertainty, relative 63 
to younger adults. Data are means +/- SEs and include data from EEG and fMRI sessions. n.s.: p = 0.13; ***1: p = 64 
2.6e-05; ***2: p = 6.1e-04; ***3: p = 8.2e-04. (b) Drift rate estimates for an HDDM model that only included age-65 
matched features (“match” in a). This model indicated retained age differences in single-target drift rate and drift 66 
changes under uncertainty (right). (c) Older (vs. younger) adults showed stronger relative drift rate reductions from the 67 
single-target baseline. 68 
 69 
Text S1-3. Drift rate effects for accuracy-matched features. Our analysis indicated that older adults on average 70 
showed reduced behavioral uncertainty costs. However, these uncertainty costs are thought to arise from attending to 71 
a varied feature set, whose discrimination also varies between age groups when only a single feature is relevant. To 72 
examine whether potential ceiling or floor effects in feature-specific accuracy (e.g., due to varying perceptual 73 
uncertainty) acts as a between-group confound, we sorted features according to their single-target accuracy in each 74 
participant, and averaged accuracy according to such " preference” within each age group. This revealed that three out 75 
of the four features elicited comparable single-target accuracy between age groups, whereas only the best feature of 76 
younger adults, and the worst feature of older adults could not be matched (Figure S1-3a). To test the robustness of 77 
unmatched drift rate estimates (Fig. 1b), we created HDDM models that excluded the most preferred feature of 78 
younger adults, and the individually least preferred feature in older adults (i.e., only including “matched” features). 79 
Results from this control analysis are shown in Figure S1-3b. We observed retained age differences in single-target 80 
drift rates, as well as uncertainty-related drift rate changes that mirrored our main results. These results indicate that 81 
baseline feature differences are likely not the principal origin of age and uncertainty drift rate differences.  82 
 83 
Text S1-4. More pronounced relative performance decreases in older adults. Compared with younger adults, 84 
older adults’ drift rates were lower across levels of target load (Fig. 1b). To probe whether drift rates across all set sizes 85 
show similar proportional age changes, we calculated relative drift rate changes. Arguing against uncertainty-86 
independent age differences in drift rate, we observed larger relative drift rate decreases under uncertainty in older as 87 
compared with younger adults (see Fig. S1-3b right for feature-matched HDDM; similar results were obtained in the 88 
main model). This indicates that despite being smaller in absolute terms, older as compared to younger adults suffered 89 
stronger relative drift rate losses once uncertainty was introduced. This mirrored larger accuracy decreases in matched 90 
features once uncertainty was introduced (Fig. S1-3a). Taken together, this indicates that uncertain contexts present an 91 
outsized challenge to older adults’ performance, over and above challenges in single-target specificity. For our main 92 
analyses that target inter-individual relations, we focus on absolute uncertainty-related drift rate changes due to their 93 
relation to neural uncertainty adjustment in prior work (Kosciessa et al., 2021), and the computational interpretability 94 
of absolute drift rates at each target load. 95 
  96 
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 98 
 99 

Figure S1-4. Centroparietal Positive Potential (CPP) as a signature of domain-general evidence integration. 100 
(a) Modulation of CPP as a neural signature of evidence accumulation (mean ± within-subject SEM). The integration 101 
slope of the response-locked CPP decreases with increasing probe uncertainty. Traces are mean ± within-subject SEM. 102 
Insets show CPP slope estimates from −250 to −50 ms relative to response execution. (b) Age comparison of CPP 103 
integration slopes (yellow background) and CPP integration thresholds (grey backgrounds). (c) CPP estimates of 104 
evidence integration converge with behavioral drift rate estimates at the interindividual level, both w.r.t the single-105 
target condition (r(93) = 0.45, 95%CI = [0.27,0.59], p = 6.1e-06; age-partialed: r(92) = 0.27, 95%CI = [0.08,0.45] p = 106 
0.01) and linear effects of target number (r(93) = 0.51, 95%CI = [0.34,0.64], p = 1.4e-07; age-partialed: r(92) = 0.34, 107 
95%CI = [0.14,0.5] p = 9.3e-04).  108 
  109 
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 110 
 111 

Figure S1-5. Contralateral beta power as a signature of motor-specific response 112 
preparation. (a) Pre-response desynchronization of contralateral mu-beta power 113 
shallow with increasing number of targets. Traces show means +/- within-subject 114 
SEM. (b) Linear slope estimates, estimated via linear regression from -250 ms to -50 115 
ms, relative to response. Data are within-subject centered for visualization. Statistics 116 
refer to paired t-tests of linear slopes against zero. (c, d) Age comparison of linear 117 
modulation of beta slopes (c) and integration thresholds (d) by target load. Statistics 118 
refer to unpaired t-tests. 119 

 120 
Text 1-5. Motor-specific response preparation. In addition to the domain-general CPP, we also investigated 121 
motor-specific contralateral beta power (Figure S1-5a). Extending results from  behavioral modeling, and CPP 122 
integration slopes, we observed a shallowing of pre-response beta power build-up, suggesting decreases in response 123 
preparation (Figure S1-5b). However, such shallowing was not statistically different between age groups (Figure 124 
S1-5b), thus deviating from the age x load interaction that we observed for the remaining integration signatures. 125 
Furthermore, linear changes in beta slope as a function of target load were neither associated with linear drift 126 
changes (r(93) = -0.03, 95%CI = [-0.23,0.17], p = 0.77) nor CPP slopes (r(93) = -0.11, 95%CI = [-0.3,0.09], p = 127 
0.29) across age groups. The parameters were also not directly related in the single-target condition (drift rates: r(93) 128 
= 0.18, 95%CI = [-0.02,0.37], p = 0.07; CPP slopes: r(93) = -0.06, 95%CI = [-0.26,0.14], p = 0.55). Motor-specific 129 
response preparation thus appears to partially dissociate from effector-unspecific evidence integration at the 130 
individual level. 131 
  132 
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 134 
 135 

Figure S3-1. CPP slope during the Stroop task. (a) Response-aligned CPP traces split by condition 136 
and age group. Time series were smoothed with 60 ms windows for visualization, but not for slope 137 
fitting. Linear slopes were estimated during the interval of -600 to -100 ms prior to indicated SOTs, 138 
marked by the red line. (a) CPP integration slopes were reduced in magnitude in the mismatch condition 139 
in both age groups. (b) Interference effects on CPP slopes were more pronounced in younger ad 140 
compared with older adults. The magnitude of individual interference effects was similarly reflected in 141 
RTs and CPP slopes with longer RTs being coupled to stronger CPP slope reductions [r(91) = -0.43, 142 
95%CI = [-0.58,-0.25], p = 1.5e-05; partial-correlation accounting for age: r(89) = -0.32, 95%CI = 143 
[-0.49,-0.12] p = 3.3e-04].144 



 8 

 145 
 146 

Figure S4-1. Load modulation for cognitive control (a) and excitability signatures (b). Statistics 147 
refer to paired t-tests of linear slopes against zero. In line with the different excitability indices 148 
capturing a shared latent characteristic, the magnitude of uncertainty modulation was inter-individually 149 
related among the three parameters (alpha-1/f: r = 0.44, p = 9.8e-06; 1/f-SampEn: r = 0.6, p = 1.1e-150 
10; SampEn-alpha: r = 0.24, p = .02). (c) Sample entropy input spectrum highlighting the exclusion 151 
of alpha-range signal content. 152 

  153 
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 154 
 155 

Figure S5-1. Pre-stimulus alpha power. Uncertainty similarly increases pre-stimulus alpha power in younger and 156 
older adults but does not relate to individual drift rate adjustments. Light grey squares indicate younger adults, dark 157 
grey diamonds correspond to older adults. 158 

 159 
Text S5-1 Pre-stimulus alpha power. Evidence on age-related changes in pre-stimulus alpha power are mixed. Early 160 
studies suggest that pre-stimulus alpha synchronization (or lateralization) in the context of attentional cueing is 161 
observed exclusively for younger, but not older adults (Hong et al., 2015; Vaden et al., 2012). In contrast, (Leenders et 162 
al., 2018) indicated similar pre-stimulus lateralization between age groups, whereas they noted age differences in alpha 163 
modulation during working memory retention. While our task design does not allow us to assess the lateralization of 164 
alpha power, our results indicate that pre-stimulus alpha power increases similarly alongside uncertainty in both age 165 
groups, but with no apparent relation to subsequent (delayed) task performance (Figure S3-1).  166 
  167 



 10 

 168 
 169 
Figure S5-2. Steady-state visual evoked potential (SSVEP). (a) Both age groups exhibited a robust SSVEPs. Time-170 
resolved, spectrally normalized, SSVEP power, averaged across occipital channels (O1, Oz, O2), indicates clear SSVEP 171 
increases specifically during stimulus presentation. Data are presented as mean values +/- within-subject SEM. 172 
Topography insets show stimulus-evoked SSVEP contrast minus baseline. (b) However, estimates from occipital EEG 173 
channels (O1, Oz, O2) did not indicate age differences in single-target SSVEP magnitude, a main effect of load in 174 
either group, or differences in the strength of linear modulation (~ age*load interaction). 175 
 176 
Text S5-2. SSVEP magnitude. SSVEP magnitude has been suggested as a signature of encoded sensory information 177 
that is enhanced by attention (Morgan et al., 1996; Muller et al., 2006; Quigley et al., 2010; Quigley & Muller, 2014) 178 
and indicates fluctuations in early visual cortex excitability (Zhigalov et al., 2019). However, despite a clear SSVEP 179 
signature of comparable magnitude in both younger and older adults (Fig. S5-2 a, b), we did not observe significant 180 
effects of target uncertainty on SSVEP magnitude in either age group (Fig. S5-2). Given that the SSVEP frequency 181 
was shared across different features, we could not investigate feature selection via SSVEPs as is commonly the case in 182 
attention studies. Studies with feature-specific SSVEPs, suggest that younger adults’ SSVEP magnitude differentiates 183 
between attended and unattended features, whereas no robust differentiation is observed in older adults, pointing to 184 
deficits in attentional filtering (Quigley et al., 2010; Quigley & Muller, 2014). 185 
  186 
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 187 
 188 

Figure S5-3. Task PLS of sample entropy and aperiodic slopes across all channels. 189 
Brainscores for younger adults are shown on the left side, with data for older adults shown 190 
to the right. Inset estimates refer to fixed linear effects models. Topographies of bootstrap 191 
ratios are unthresholded. 192 

 193 
Text S5-3. Exploratory whole-brain task PLS of aperiodic dynamics. In the main analysis, we restricted the 194 
PLS to posterior channels with the aim to predominantly characterize signals stemming from parietal and visual 195 
cortex. To explore whether this analysis missed uncertainty-related changes in aperiodic dynamics in other regions, 196 
we performed an additional task PLS analysis that included all channels. This task PLS averaged sample entropy 197 
across the final 2.5s of stimulus presentation. To normalize relative contributions of the two signatures to the PLS, 198 
we z-transformed values of each signature across target load levels prior to including them in the model. This joint 199 
PLS resulted in two significant latent variables (Figure S5-3). The first latent variable (permuted p = 0.001) indicated 200 
uncertainty-related increases in sample entropy and shallowing of aperiodic slopes in younger, but not older adults. 201 
Regional contributions were predominantly observed in posterior sensors. This latent variable thus captures the 202 
observations in the main analysis. The second latent variable (permuted p = 0.021) was instead marked by quadratic 203 
changes (younger adults: p = 1.5e-08; older adults: p = 0.03; linear mixed effects model with fixed and random 204 
quadratic effects) as a function of target load. Estimates initially decreased, followed by an increase with load towards 205 
higher target load, predominantly at mediofrontal channels.  206 
  207 
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 209 
 210 
Figure S6-1. Main effects of target load on BOLD magnitude. A task partial least squares (PLS) analysis indicated 211 
three significant latent variables (loadings shown in panels a-c) that were sensitive to changes in target number. (d) 212 
Statistics refer to paired t-tests of linear slopes against zero. 213 
 214 
Text S6-1. Main effects of uncertainty on BOLD magnitude across the adult lifespan. We performed a whole-215 
brain task PLS to assess potential main effects of uncertainty on BOLD magnitude. In brief, we observed a similar 216 
first latent variable (permuted p < 0.001) to that reported in younger adults (Kosciessa et al., 2021), highlighting 217 
uncertainty-related increases dominantly in cortical areas encompassing the frontoparietal and the midcingulo-insular 218 
network, as well as in the thalamus (see detailed results of this analysis in Figure S6-1 and Table S2-4.The task PLS 219 
indicated two further robust LVs. LV2 (permuted p < 0.001) captured a non-linear pattern in younger adults and linear 220 
changes under uncertainty in older adults. Regional contributors partly overlapped with the initial LV (Table S3). 221 
Finally, LV3 (permuted p < 0.001) captured nonlinear changes (initial increases in engagement followed by 222 
disengagement) in both age groups in a set of regions encompassing positive loadings in frontoparietal components 223 
of the executive control network, and negative loadings in temporal-occipital cortex (Table S4). 224 
  225 
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 226 

 227 
Figure S6-2. Additional brainscore relations before (left) and after controlling for categorical age (right). 228 
Beyond the a priori signatures included in the behavioral PLS model, post-hoc exploration indicated that individuals 229 
with more pronounced BOLD uncertainty modulation also had larger single-target drift rates, and lower single-target 230 
boundary separation (“boundary thresholds”), as well as larger increases in the latter as a function of uncertainty, also 231 
after controlling for categorical age (see right). In addition to the magnitude of uncertainty-related drift rate modulation, 232 
CPP slope modulation was similarly related to Brainscores. Plots indicate Pearson correlation coefficients +- 95%CI 233 
after accounting for age covariation. 234 
  235 



 14 

 236 
 237 

Figure S6-3. BOLD modulation effects are robust to accuracy differences within (a) and 238 
between age groups (b). (a) Younger and older individuals with larger BOLD uncertainty 239 
modulation (LV1, see Fig S6-1) achieve higher drift rates across uncertainty levels at comparable 240 
accuracy levels. Data show upper (full lines) and lower (broken lines) groups of a trichotomized split 241 
of accuracy and drift rate data based on the magnitude of uncertainty change (234 vs. 1) in the 1st 242 
LV of the task PLS (closely mirroring the change LV1 of the behavioral PLS). Insets illustrate 243 
comparable within-group splits (split performed within-group). Data are means +- SEs. (b) Age x 244 
uncertainty interaction in mediodorsal thalamus for accuracy-matched features. For this analysis, 245 
trials with probes of the best (YA) or worst (OA) features were excluded to achieve group-matched 246 
single-target accuracy (see Text S1-3). A linear mixed effects model indicated a retained group x 247 
target load interaction for data averaged in the time window of interest (yellow shading; beta=-0.757, 248 
SE=0.369, t = -2.0507, dof = 364, p = 0.041, 95%CI = [-1.48, -0.03]). Data are means +- SEs. 249 

250 
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Table S1: Statistics for within age-group effects. Effects were assessed via paired t-tests against zero. YA: 251 
Younger adults. OA: Older adults. 252 
  253 

Dependent variable Figure df t-value p-value Cohen’s d 
Drift rate (single-target) – YA 1b 41 26.41 2.3e-27 4.07 
Drift rate (single-target) – OA 1b 52 22.06 4.6e-28 3.03 
CPP (single-target) – YA 1b 41 8.62 9.5e-11 1.33 
CPP (single-target) – OA 1b 52 7.92 1.7e-10 1.09 
Drift rate (linear mod.) – YA 1b 41 -17.07 3.1e-20 -2.63 
Drift rate (linear mod.)) – OA 1b 52 -17.45 2.2e-23 -2.4 
CPP (linear mod.)) – YA 1b 41 -7.37 4.9e-09 -1.14 
CPP (linear mod.)) – OA 1b 52 -5.04 5.9e-06 -0.69 
Stroop interference – YA 3b 47 10.01 3.1e-13 1.44 
Stroop interference – OA 3b 52 16.02 9.3e-22 2.2 
Theta power (linear mod.) – YA 4a 41 6.85 2.6e-08 1.06 
Theta power (linear mod.) – OA 4a 52 2.3 2.6e-02 0.32 
Pupil diameter (linear mod.) – YA 4b 41 7.34 5.6e-09 1.13 
Pupil diameter (linear mod.) – OA 4b 52 7.25 1.9e-09 1 
Alpha power (linear mod.) – YA 5a 41 6.05 3.7e-07 0.93 
Alpha power (linear mod.) – OA 5a 52 -0.75 0.46 -0.1 
Sample Entropy (linear mod.) – YA 5b 41 2.21 0.033 0.34 
Sample Entropy (linear mod.) – OA 5b 52 0.23 0.82 0.03 
1/f slope (linear mod.) – YA 5c 41 4.67 3.3e-05 0.72 
1/f slope (linear mod.) – OA 5c 52 0.14 0.89 0.02 
fMRI Brainscore – YA 6b 41 11.49 2.1e-14 1.77 
fMRI Brainscore – OA 6b 52 7.47 8.8e-10 1.03 
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Table S2: PLS model peak activations, bootstrap ratios, and cluster sizes for task PLS LV1. 254 
 255 

  MNI Coordinates   
Region Hem X Y Z BSR #Voxels 
IFG (p. Opercularis) L -45 9 27 15.11 3164 
Inferior Parietal Lobule L -42 -48 45 14.3 3451 
Insula Lobe R 30 21 -3 11.4 170 
Inferior Temporal Gyrus L -54 -66 -12 11.34 880 
Thalamus L -6 -30 -3 10.76 1064 
Superior Frontal Gyrus R 27 -3 54 10.21 903 
Cerebelum (Crus 1) R 6 -81 -24 8.5 276 
Cerebelum (VI) R 30 -66 -30 7.83 129 
Inferior Temporal Gyrus R 54 -63 -12 6.19 297 
Area Fo3 L -27 39 -21 4.68 45 
Calcarine Gyrus L -15 -78 6 4.28 29 
Middle Frontal Gyrus R 27 51 3 4.25 31 
Superior Medial Gyrus R 12 48 33 -12.32 2317 
Area hOc3d [V3d] L -24 -99 12 -11.64 6542 
MCC R 3 -15 36 -11.23 889 
Area lg1 R 30 -21 3 -11.14 4238 
Postcentral Gyrus R 21 -36 63 -5.86 121 
Postcentral Gyrus L -39 -21 36 -5.8 43 
Middle Frontal Gyrus L -33 24 39 -5.32 32 
Angular Gyrus L -48 -63 27 -4.81 59 
Middle Frontal Gyrus R 45 15 48 -3.95 55 

  256 
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Table S3: PLS model peak activations, bootstrap ratios, and cluster sizes for task PLS LV2. 257 
 258 

  MNI Coordinates   
Region Hem X Y Z BSR #Voxels 
Area hOc3d [V3d] L -24 -99 12 9.16 1974 
Insula Lobe R 42 15 -3 6.66 136 
Middle Orbital Gyrus R 30 54 -15 5.31 143 
Superior Frontal Gyrus R 21 12 60 5.01 911 
Middle Frontal Gyrus R 33 48 12 4.91 119 
Angular Gyrus R 57 -51 27 4.76 280 
Inferior Temporal Gyrus R 51 -3 -39 4.47 50 
Inferior Temporal Gyrus R 63 -27 -30 4.4 28 
Superior Occipital Gyrus R 21 -63 42 4.05 69 
Rolandic Operculum L -57 6 3 3.79 27 
Hippocampus L -27 -21 -18 -7.36 316 
Calcarine Gyrus L -12 -60 12 -6.5 244 
Rectal Gyrus L -9 27 -15 -6.24 440 
Middle Temporal Gyrus L -66 -57 -9 -6.12 256 
Middle Occipital Gyrus L -42 -81 39 -6.08 190 
IFG (p. Orbitalis) L -36 33 -18 -5.97 94 
Precuneus R 9 -54 9 -5.67 131 
ParaHippocampal Gyrus R 21 -21 -18 -4.83 39 
IFG (p. Orbitalis) R 24 27 -15 -4.67 28 
Middle Temporal Gyrus R 54 -6 -15 -4.56 51 
MCC L -12 -42 36 -4.44 76 
Middle Occipital Gyrus R 45 -78 27 -4.34 34 
Middle Frontal Gyrus L -27 30 42 -4.27 153 
Cerebelum (Crus 2) R 3 -87 -33 -4.14 28 
Middle Temporal Gyrus L -51 -3 -24 -3.94 53 
Superior Frontal Gyrus L -24 60 3 -3.78 27 

  259 
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Table S4: PLS model peak activations, bootstrap ratios, and cluster sizes for task PLS LV3. 260 
 261 

  MNI Coordinates   
Region Hem X Y Z BSR #Voxels 
Angular Gyrus R 51 -57 36 8.05 604 
Middle Frontal Gyrus R 36 21 36 6.87 660 
Inferior Parietal Lobule L -54 -51 42 6.27 469 
Precuneus L -9 -66 45 6.13 474 
Middle Frontal Gyrus L -39 24 33 6.05 726 
Middle Frontal Gyrus R 27 57 0 5.97 287 
Middle Temporal Gyrus R 60 -33 -12 5.46 184 
Cerebelum (Crus 1) R 9 -81 -27 5.29 62 
Putamen L -27 6 -6 4.82 74 
Putamen R 24 0 6 4.38 67 
Inferior Temporal Gyrus L -66 -42 -21 4.16 49 
Cerebelum (Crus 2) L -15 -87 -30 3.96 32 
Cerebelum (Crus 2) R 33 -72 -45 3.8 53 
Inferior Temporal Gyrus R 48 -69 -9 -10.33 1706 
Inferior Occipital Gyrus L -45 -75 -6 -9.9 1022 
Postcentral Gyrus L -57 -6 39 -5.18 232 
Postcentral Gyrus L -51 -33 57 -4.5 43 
ACC R 12 42 9 -4.41 191 
Superior Parietal Lobule L -24 -63 48 -4.4 36 
Posterior-Medial Frontal L -6 3 57 -4.4 65 

  262 
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Table S5: PLS model peak activations, bootstrap ratios, and cluster sizes for behavioral PLS LV1. 263 
 264 

  MNI Coordinates   
Region Hem X Y Z BSR #Voxels 
Thalamus L -6 -15 12 8.57 573 
Posterior-Medial Frontal L 3 12 45 8.13 555 
Precentral Gyrus L -42 0 30 7.51 931 
Superior Frontal Gyrus R 27 -3 54 6.91 222 
Inferior Occipital Gyrus L -42 -72 -6 6.13 208 
Middle Temporal Gyrus L -51 -51 21 6.03 90 
Putamen R 30 18 0 5.75 94 
Middle Frontal Gyrus R 36 24 21 5.74 220 
Middle Temporal Gyrus L -57 -33 -6 5.26 35 
Inferior Parietal Lobule R 30 -54 48 5.14 323 
Inferior Parietal Lobule L -36 -57 45 4.75 315 
Area hOc1 [V1] R 9 -99 6 4.7 82 
Inferior Temporal Gyrus R 45 -63 -12 4.51 27 
Hippocampus L -27 -18 -21 -8.92 873 
MCC L -12 -36 48 -6.05 359 
Putamen R 30 -3 9 -5.79 879 
Superior Frontal Gyrus R 18 54 30 -5.73 443 
Middle Frontal Gyrus L -21 30 54 -5.45 67 
Superior Medial Gyrus R 12 42 48 -5.28 138 
IFG (p. Orbitalis) R 36 30 -21 -5.2 55 
ParaHippocampal Gyrus R 21 -18 -18 -5.13 49 
Middle Temporal Gyrus L -51 3 -33 -4.28 29 
Inferior Frontal Gyrus L -33 36 -21 -4.17 26 
Rectal Gyrus L -9 24 -12 -4.15 73 
Inferior Temporal Gyrus L -57 -24 -27 -4.03 32 
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