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Broadscale dampening of uncertainty
adjustment in the aging brain

Julian Q. Kosciessa 1,2,3 , Ulrich Mayr 4, Ulman Lindenberger1,2 &
Douglas D. Garrett 1,2

The ability to prioritize among input features according to relevance enables
adaptive behaviors across the human lifespan. However, relevance often
remains ambiguous, and such uncertainty increases demands for dynamic
control. While both cognitive stability and flexibility decline during healthy
ageing, it is unknown whether aging alters how uncertainty impacts percep-
tion and decision-making, and if so, via which neural mechanisms. Here, we
assess uncertainty adjustment across the adult lifespan (N = 100; cross-sec-
tional) via behavioralmodeling and a theoretically informed set of EEG-, fMRI-,
and pupil-based signatures. On the group level, older adults show a broad
dampening of uncertainty adjustment relative to younger adults. At the indi-
vidual level, older individuals whose modulation more closely resembled that
of younger adults also exhibit better maintenance of cognitive control. Our
results highlight neural mechanisms whose maintenance plausibly enables
flexible task-set, perception, and decision computations across the adult
lifespan.

Prioritizing goal-relevant input features is central to cognitive control
and adaptive behaviors. But how do we discern relevant signals from
distractions?While some contexts explicitly highlight specific features
(e.g., a single road sign emphasizing school children)1, most contexts
provide only sparse (e.g., a “!” sign) or contrasting cues (e.g., multiple
signs: school children, bicycles, construction, …). Whereas selective
cues enable us to prioritize individual features with high acuity,
ambiguity about which input features are goal-relevant (i.e., task
uncertainty) demands broader levels of sensitivity, even at the expense
of precision2,3. An adaptive system should track the moment-to-
moment variations in uncertainty, and tune perception, guide deci-
sions, and select actions accordingly4,5. Here, we examine whether a
failure to adapt computations to varying task uncertainty is a key
characteristic of healthy human cognitive aging.

Behavioral observations support aging-related deficits in uncer-
tainty adjustment. In contexts that cue specific task-relevant features
of compound stimuli, older adults remain sensitive also to irrelevant
features6,7, indicating challenges in stable feature selection8–11.

Conversely, older adults show inflexibility when contexts require
dynamic feature switches12–14, and incur substantial “fade-out” costs
when transitioning from dynamic to stable contexts15. Such observa-
tions suggest that older adults may be stuck in a suboptimal ‘middle
ground’ that neither affords stable task selectivity when uncertainty is
low, nor task flexibility in dynamic or uncertain contexts. Although
age-related deficits have been reported for aligning computations
(e.g., learning rate) to uncertainty16, it remains unclear whether such
underutilization arises from challenges in estimating uncertainty, or
from an inability to leverage adequate estimates. For uncertainty to
provide a principled and comprehensive lens on aging-related adap-
tivity constraints, first evidence is required to establishwhether and/or
how neural responses to uncertainty differ in the older adult brain.

How brain function adjusts to variable uncertainty remains
debated17, but emerging models implicate interacting systems that
define task sets, tune perception, and inform decision formation18–20.
Task-set management has been localized to fronto-parietal cortex20,21,
with recent evidence suggesting additional thalamic contributions in
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uncertain contexts22,23.When task sets specify target features, perceptual
networks can constrain relevant information by combining distractor
inhibition24 with target enhancement25. In contrast, high uncertainty
about goal-relevant targets may facilitate sensitivity to multiple features
via broad increases in excitability26. Such regime switches can be
orchestrated by diffuse neurotransmitter systems that adjust compu-
tational precision to changing demands2; for example, pupil dilation (as
a proxy)27 transiently increases alongside uncertainty28,29. In young
adults, we observed such an integrated response to rising uncertainty30,
encompassing increased fronto-thalamic BOLD activation, increased
pupil diameter, and increased EEG-based cortical excitability. These
results indicate that interacting systems enable adaptive responses to
variable task uncertainty. But does the responsiveness of these systems
differ across the adult lifespan?

Initial behavioral evidence from reward-learning paradigms sug-
gests that older adults are less able to represent and use uncertainty16.
Moreover, the general observation that older adults’ brain activity is
less responsive to varying demands31–33 is suggestive of less adaptive
responses per se. Senescence is marked by changes across multiple
systems, including diminished prefrontal cortex function34, metabolic
decreases in cognitive control networks35–37, progressive deterioration
of subcortical neurotransmitter systems38–40 alongside reduced pupil
size modulation41, reduced cortical inhibition42,43, and structural
declines of coordinating nodes such as the thalamus44,45. Many of these
systems can be linked to the representation of, and adaptive response
to, uncertainty30. Yet, there is also a long-standing challenge in the
cognitive neuroscience of aging to identify, and distinguish between,
competing functional explanations for changes in adaptivity. Reduc-
tions inworking-memory capacity46, inhibition47, or processing speed48

have all been proposed as general changes underlying a wide range of
deficits. The fact that age differences usually occur even in minimal-
demand baseline conditions32 can additionally complicate inferences
from observed age differences in adaptivity. Here, we use convergent
evidence from a broad spectrum of behavioral and neural signatures
(decision modeling, EEG, fMRI, pupillometry) alongside a host of
controls to establish altered uncertainty processing as a core featureof
human brain aging.

Here, we tested whether we could explain individual differences in
adaptivity among older adults. Specifically, a “maintenance account of
aging”49 suggests that cognitive deficits with senescence emerge when
neural resources become insufficient to meet demands, which implies
that older adults with neural engagement resembling that of younger
adults should better maintain function. We test this account by exam-
ining the degree to which older adults express a young-adult pattern of
specific neuro-behavioral signatures when adapting to uncertainty.

In this work, we examined multimodal signatures (decision
modeling, EEG, fMRI, pupillometry) in 47 younger (avg. 26 years) and
53 older (avg. 69 years) adults to comprehensively test uncertainty
adjustment across the adult lifespan. Participants performed a per-
ceptual decision task that manipulated uncertainty about which fea-
ture(s) of a compound stimulus would become decision relevant. By
assessing signatures that change under task uncertainty in younger
adults’30, we highlight dampened uncertainty modulation in older
adults along with more constrained changes to perceptual evidence
integration.Older adultswith brain responsesmore closely resembling
younger adults showed benefits in feature selection, providing initial
evidence that maintained uncertainty adjustment supports adaptive
control in healthy ageing.

Results
Older adults express constrained uncertainty modulation of
evidence integration
During EEG and fMRI acquisition, participants performed a Multi-
Attribute Attention Task (“MAAT”30; Fig. 1a, S1–0). Participants had to
sample dynamic visual stimuli that varied along four features: color

(green/red), movement direction (left/right), size (small/large), and
color saturation (low/high). Stimuli were presented for three seconds,
after which participants had to indicate the more prevalent of two
options for a single probed feature. Valid pre-stimulus cues indicated
which features could be probed on the current trial. Uncertainty was
parametrically manipulated by increasing the number of cued
features50,51. When participants received a single cue, they could attend
to only a single target feature during stimulus presentation (low
uncertainty); whereas multi-feature cues reduced information about
which featurewould beprobed, thus necessitating (extra-dimensional)
attention switches52,53 betweenup to four target features (“target load”;

Fig. 1 | Older adults show constrained decision-related adjustments to rising
uncertainty. a A Multi-Attribute Attention Task (“MAAT”) requires participants to
sample up to four visual features of a compound stimulus for a subsequent per-
ceptual decision. On each trial, participants were first cued to the set of possible
probe features (here: motion direction and color). The compound stimulus (which
always included all four features) was then presented for 3 s, followed by a single-
feature probe (here: prevalence of red vs. green color in the preceding stimulus).
Uncertainty was manipulated as the number of target features (one to four) in the
pre-stimulus cue (see also Supplementary Fig. 1). b Behavioral data were modeled
with a drift diffusion model, in which evidence for options is accumulated with a
‘drift rate’. Older adults exhibited reduced drift rates for single targets (top) and
weremarkedbymore limiteddrift reductions under elevateduncertainty (bottom).
Data points represent individual averages across EEG and fMRI sessions. Table S1
reports within-group statistics. c The Centro-parietal positivity (CPP) provides an a
priori neural signature of evidence accumulation. The rate of evidence accumula-
tion was estimated as the linear slope of the CPP during the time window indicated
by the black bar.Older adults exhibited reduced integration slopes for single targes
(top) and were marked by constrained load-related slope shallowing under ele-
vated uncertainty (bottom). To illustrate age- (blue: younger, red: older) and
condition-differences (color saturation) in integration slope, responses have been
rescaled to the [0, 1] range for visualization. Supplementary Fig. 6 shows original
traces. p-values result from two-sided independent t-tests (see Statistical analyses).
YA: N = 42. OA: N = 53.
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high uncertainty) to optimally inform probe-related decisions.
Younger and older adults performed above chance level for all visual
features (Supplementary Fig. 2).

To characterize probe-related decision processes, we fitted a
hierarchical drift-diffusionmodel54 (HDDM) to participants’ responses.
The model estimates (a) the drift rate at which evidence is integrated
towards a decision bound, (b) the distance between correct and
incorrect decision bounds, and (a) the non-decision time of probe
processing and response execution. Across sessions and age groups
the best fitting models consistently included uncertainty effects in all
three parameters (Supplementary Fig. 3). Here, we focused on the drift
rate based on its close association to sampled evidence30. Supple-
mentary Note 1 reports the remaining parameters. With rising uncer-
tainty, drift rates decreased for both age groups, indicating that
uncertainty generally constrained choice evidence for the probed
feature. Crucially, relative to younger adults, older participants’ drift
rateswere reducedwhen only a single featurewas cued as relevant and
decreased less alongside increasing uncertainty (Fig. 1b). These effects
remained present when only features with age-matched single-target
accuracies were included in the model (Supplementary Note 2). In
relative terms, such dampened adjustment reflected larger relative
performance decreases when transitioning into more uncertain con-
texts in older than younger adults (Supplementary Note 3). Neither
accuracy nor drift rate variations between individual features could
account for the observed age effects (Supplementary Note 4).

We assessed the convergence of behavioral results with an a priori
neural proxy signature of evidence integration, the slope of the EEG’s
centroparietal positive potential (CPP55; Fig. 1c, Supplementary Fig. 6)
prior to decisions. Consistent with behavioral modeling, CPP slopes
were flatter for older relative to younger participants in single-target
contexts, and older adults’ uncertainty-related modulation of CPP
slopes was minimal (Fig. 1c). In line with both indices capturing latent
evidence integration, CPP and drift estimates were inter-individually
related, both for single targets (t(93) = 5.72, p<0.001, r=0.51, 95%CI =
[0.34,0.64]; age-partial: t(92) = 3.49, p<0.001, r=0.34, 95%CI =
[0.14,0.5]), and their uncertainty modulation (t(93) = 4.86, p <0.001,
r=0.45 95%CI = [0.27,0.59]; age-partial: t(92) = 2.70, p=0.008, r=0.27,
95%CI = [0.08,0.45]; Supplementary Fig. 6). We also investigated con-
tralateral beta power as a signature ofmotor response preparation56 but
did not observe clear relations to drift rate or CPP estimates (Supple-
mentary Note 5), suggesting that it may be a less suitable evidence
integration index here. Reduced modulation of pre-response slopes in
older adults was observed (at both central and parietal sites) also after
controlling for overlapping potentials locked to probe onset (Supple-
mentary Note 6). Taken together, older adults’ decisions were marked
by reduced evidence integration rates for single targets, and more
constrained absolute drift rate reductions under uncertainty.

Decoding indicates uncertainty-induced trade-offs between
feature specificity and sensitivity
Higher single-target drift rates and larger drift reductions may reflect
an adaptive trade-off between reduced single-target specificity and
elevated sensitivity to multiple features under higher uncertainty.
However, as decisions were linked to the probed feature, they cannot
elucidate how unprobed features were processed. To clarify this
question, we performed fMRI decoding analyses. We created pairwise
classifiers that targeted the sensory representation of each feature’s
prevalent option (e.g., left vs. rightward movement) based on BOLD
responses in visual cortex (see Methods: fMRI decoding of prevalent
feature options). The prevalent option of individual features could be
decoded above chance during stimulus presentation (Fig. 2a). Robust
decoding was observed for all cued features except for saturation, for
which discrimination was also behaviorally most challenging (Sup-
plementary Fig. 2). In line with task-relevance motivating feature
representations18, above-chance decoding for uncued features was not

statistically significant above-chance in the same time window of
interest, except for motion discrimination (see Fig. 2b).

Next, we assessed uncertainty and age effects on decoding
accuracy. First, we applied classifiers to trials in which target features
were probed, whichmirrors the behavioral task. A linearmixed effects
model indicated a significant reduction in decoding accuracy with
increasing uncertainty (t(17762) = −3.56, β = −0.18, SE = 0.05, p < 0.001;
Fig. 2c), as well as reduced decoding accuracy for older adults
(t(91) = −2.77, β = −0.862, SE = 0.31, p =0.007). No statistically sig-
nificant interaction was observed (t(17761) = −0.31, β = −0.03, SE = 0.1,
p =0.760). Crucially, such uncertainty-related precision losses may
trade-off against sensitivity to other cued, but ultimately unprobed
features. We tested this possibility by considering decoding accuracy
across all unprobed features in any given trial. This analysis indicated
that uncertainty indeed slightly increased decoding accuracy across
unprobed features (t(17762) = 2.94, β =0.077, SE = 0.026, p =0.003).
Decoding accuracy trended to be lower in older compared to younger
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Fig. 2 | Decoding of prevalent options from visual cortex. a Decoding accuracy
for cued and uncued features across age groups (means ± SEM; N=93). Gray shading
indicates the approximate timing of stimulus presentation considering the temporal
lag in the hemodynamic response. Lines indicate periods of statistically significant
differences from chance decoding accuracy (50%) as assessed by cluster-based per-
mutation tests. The inset highlights the visual cortex mask from which signals were
extracted for decoding. b Same as in a, but for separate feature probes. Bars indicate
sign. above-chance accuracy during the approximate time of stimulus presentation.
c Decoding accuracy for probed and unprobed features as a function of the number
of cued targets; and decoding accuracy for all features as a function of age. Accuracy
was averaged across significant decoding timepoints for cued features. Means ±
within-subject SEM for (un)probed features, means ± SEM for age analysis (younger
N=42, olderN= 51). Plots illustrate in-text statistical results derived from linearmixed
effects models (see methods: fMRI decoding of prevalent feature options).
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adults (t(91) = −1.92, β = −0.259, SE = 0.134, p =0.057). Again, no sta-
tistically significant interaction was observed (t(17761) = 0.78, β = 0.04,
SE = 0.05, p =0.434). Consistent with a mixture of opposing uncer-
tainty effects on probed and unprobed features, no statistically sig-
nificant uncertainty effect was observed when all trials were
considered (t(17762) = 0.53, β =0.012, SE = 0.024, p =0.593), but
decoding accuracy was globally reduced in older adults (t(91) = −2.84,
β = −0.41, SE = 0.144, p =0.006). Decoding analyses thus suggest that
rising uncertainty increased sensitivity to more diverse features in
both age groups, albeit at the cost of reduced precision for single
features.

MAAT performance generalizes to feature selection in the con-
text of low perceptual demands
Relative to younger adults, older adults appear to have encoded less
single-target evidence for downstream decisions. However, the mul-
tifaceted demands of the MAAT do not resolve whether such differ-
ences arise from task idiosyncrasies such as the necessity to resolve
high perceptual uncertainty for each feature, or whether they capture
differences related to flexible feature selection. To adjudicate between
these accounts, participants also performed a Stroop task, which
probes the capacity to inhibit prepotent responses to one of two fea-
tures (the color vs. semantics) of a presented word57. We recorded
voice responses as a more naturalistic modality for older adults58. To
estimate speech onset times (SOTs ~ reaction times), we labeled the
voice onset in each trial’s recording (see methods). Labeled SOTs
showed high validity as the neural CPP peaked immediately prior to
SOTs (Fig. 3a). In line with the Stroop literature58, older adults incurred
larger behavioral interference costs (Fig. 3b) than younger adults.
These behavioral results were mirrored by neural CPP slopes: inter-
ference made pre-response CPP slopes shallower in both age groups,
but to a larger extent in older adults, and the magnitude of individual
slope reductions tracked behavioral interference costs (Supplemen-
tary Fig. 9). Crucially, participants with higher MAAT drift rates were
also faster responders in the incongruent condition (Fig. 3c), pointing
to a better capacity to inhibit prepotent responses. Notably, relations
between MAAT drift rates and SOTs in the Stroop interference con-
dition (t(93) = −8.25, p <0.001, r = −0.65, 95%CI = [−0.75,−0.51]) held
after controlling for age and SOTs in the congruent condition
(t(91) = −2.92, p =0.005, r = −0.29, 95%CI = [−0.46,−0.09]). The oppo-
site relation between congruent SOTs and drift rates was not statisti-
cally robust after accounting for age and incongruent SOTs (congruent
SOTs-drift: t(93) = −4.21, p < 0.001, r = −0.4, 95%CI = [−0.56,−0.22], age-
and incongruent SOT-partial: t(91) = 1.26, p = 0.202, r = 0.13, 95%CI =

[−0.07,0.33]). As such, selective inhibition of interfering features, as
opposed to processing speed, appears to be a key contributor to
individual MAAT drift rates. Taken together, these findings suggest
that individual and age differences in MAAT drift rates generalize to
flexible feature selection also in perceptually unambiguous contexts.

Theta power and pupil diameter upregulation with elevated
uncertainty dampens in old age
Our results indicate age-related constraints in perceptual and decision
adjustment to uncertainty. To test whether such constraints are rooted
in a reduced neural uncertainty response as expected under a main-
tenance account of cognitive and brain aging, we assessed several a
priori signatures (see ref. 30) during MAAT stimulus presentation by
means of two-group task partial-least-squares analyses (PLS, see meth-
ods). First, we assessed the effect of uncertainty on frontocentral theta
power, an index of cognitive control59 and exploration under
uncertainty60. Uncertainty increased theta power in both age groups
(Fig. 4a), but to a lesser extent in older adults (Fig. 4a). Next, we assessed
phasic changes in pupil diameter, a signature that covaries with neu-
romodulation and arousal61,62, has been related to frontal
control2,29,30,63,64, and is sensitive to rising demands65 such as dynamically
changing and uncertain contexts28,66. Once again, we observed that
uncertainty increased pupil diameter in both age groups, with more
constrained upregulation in older adults (Fig. 4b). This effect could not
be explained by a “spill-over” of differential luminance responses during
the cueing phase (Supplementary Note 7). The magnitude of pupil
modulationwas related to individual theta power increases (t(98) = 2.89,
p=0.005, r=0.28, 95%CI = [0.09, 0.45]; age-partial: t(97) = 1.92,
p=0.042, r=0.19, 95%CI = [0, 0.38]), indicating a joint uncertainty
modulation. These results indicate that both age groups were sensitive
to rising uncertainty, albeit older adults to a dampened extent.

Only younger adults adjust posterior cortical excitability to
varying uncertainty
Elevated uncertainty may impact perception by altering sensory
excitability. To test this, we focused on three indices related to cortical
excitability: alpha power, sample entropy, and aperiodic 1/f slopes30,67.
We constrained analyses to posterior sensors as we targeted visual-
parietal cortices. Supplementary Note 8 reports whole-channel ana-
lyses. In younger adults, we observed uncertainty effects on all three
signatures (Fig. 5a–c), akin to those we previously reported30. In line
with putative excitability increases, posterior alpha power decreased
alongside uncertainty, while sample entropy increased and the aper-
iodic spectral slope shallowed. However, we found no evidence of a
similar modulation in older adults for any of the probed signatures
(Fig. 5, Supplementary Fig. 10), indicating a failure of the aged system
to adjust to changinguncertainty demands. Such failuremaybe rooted
in a less precise estimation of environmental uncertainty in the aged
neural system16. However, we reduced inference demands in our
design by providing overt cues on each trial, and keeping the cue set
identical for eight consecutive trials. In line with age-invariant sensi-
tivity to uncertainty cues, we observed comparable increases in pre-
stimulus alpha power alongside uncertainty in both age groups (Sup-
plementary Note 9). However, these increases were not associated
with subsequent behavioral drift rate adjustments, arguing against a
direct role of pre-stimulus alpha power in adjudicating uncertainty.We
additionally considered the steady-state visual evoked potential
(SSVEP) as a proxy of bottom-up processing. Despite robust and
comparable SSVEPs in both age groups, we found no evidence of
uncertainty modulation in either group (Supplementary Note 10).
Given that the 30Hz flicker frequency was shared between all stimulus
features, this suggests that sensory processing of the compound sti-
mulus was similar between uncertainty conditions and age groups.
Taken together, our results suggest that older adults may have suf-
fered from a relative failure to adjust perceptual excitability to
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changing feature relevance, rather than insensitivity to uncertainty
information or an inability to encode the undifferentiated stimulus.

BOLD modulation links neuro-behavioral responses to uncer-
tainty across the adult lifespan
Finally, we investigated uncertainty-related changes in whole-brain
fMRI BOLD activation during stimulus presentation, extending sensi-
tivity also to subcortical areas like the thalamus that are considered
critical for managing task uncertainty30,68,69. We targeted associations
between uncertainty-related BOLD modulation and the a priori neu-
robehavioral signatures (i.e., uncertainty-induced changes in drift rate,
theta power, pupil diameter, alpha power, 1/f slopes, and sample
entropy) using a multivariate behavioral PLS analysis (see Methods;
Supplementary Note 11 reports a task PLS targeting the main effect of
uncertainty). We identified a single latent variable (LV; permuted <
0.001) with positive frontoparietal and thalamic loadings, and most
pronounced negative loadings in medial PFC and hippocampus
(Fig. 6a, Table S5). Loadings on this inter-individual difference LV
resembled the main effect of uncertainty on BOLD activation (Sup-
plementary Fig. 15). Older adults expressed this LV to a lesser extent
than younger adults as indicated by lower fMRI Brainscores (Fig. 6b),
indicating dampened BOLD modulation in the face of changing
uncertainty. Brainscores were associated with the latent score of neu-
robehavioral input signatures (Fig. 6c), such that less dampened BOLD
modulation in older age tracked a larger modulation of decision, EEG,
and pupil signatures. Figure 6d depicts relations to the individual
signatures of the model: across age groups, greater BOLD modulation
corresponded to larger drift rate reductions, more pronounced theta
power andpupil diameter increases, and larger excitabilitymodulation
(see Supplementary Fig. 16 for more signatures). Brainscores did not
significantly vary by gender (Supplementary Fig. 16b). As the PLS
model captured variance both within and across age groups, we used
linear-mixed-effects models to assess the age-dependency of these
relations. These models indicated that all a priori signatures, except
sample entropy and 1/f modulation, predicted Brainscores also after

accounting for the sharedmain effects of age (Table 1). This indicates a
robust coupling of uncertainty effects between most signatures, while
aligning with unobserved posterior excitability modulation in older
adults. Control analyses indicate that within- and between-group dif-
ferences in BOLD modulation did not reflect differential choice diffi-
culty (i.e., accuracy) for individual features (Supplementary Fig. 17).

Behavioral relations were closely tracked by thalamic BOLD acti-
vation. To obtain insights within this differentiated structure, we
assessed regional loadings based on projection zones and nucleus
segmentations (Fig. 6e). Loadings were highest in subregions with
frontoparietal projections, including themediodorsal nucleus (Fig. 6f).
In contrast, a traditional visual “relay” nucleus of the thalamus, the
lateral geniculate nucleus, did not show sensitivity to our uncertainty
manipulation (Fig. 6f). This indicates a specificity of thalamic effects
that coheres with functional subdivisions and alludes to uncertainty-
invariant sensory processing of the compound stimulus. These results
indicate that the mediodorsal thalamus contributes to maintained
uncertainty adjustments across the adult lifespan.

Task uncertainty is a contextual challenge17 that necessitates
flexible control, including attentional and working memory adjust-
ment. We probed whether the fMRI activation observed here can be
reduced to either of these processes. In line with our operationaliza-
tion capturing latent uncertainty, reverse inference analyses indicate
relations between spatial loadings of the behavioral PLS and prior
“state entropy” 29 activation and meta-analytic “uncertainty” maps.
This overlap was larger than with either “working memory” or “atten-
tion”maps (Supplementary Note 12), suggesting that task uncertainty
introduces multifaceted demands70 that do not fully converge with
traditional working memory or attention manipulations (Supplemen-
tary Note 13).

Discussion
Managing uncertainty is vital for navigating the flux of life. While some
environments help us to prioritize specific inputs over others, many
contexts provide few, contrasting, or ambiguous cues. Here, we

Fig. 4 | EEG and pupil markers of control demands. Uncertainty increases theta
power (a) and pupil diameter (b) across the adult lifespan, but increases are atte-
nuated in older age. (Left) The topography indicates mean bootstrap ratios (BSR)
from the task partial least squares (PLS) model. “Brainscores” summarize the
expression of this pattern into a single score for each condition andparticipant (see
methods; Supplementary Fig. 10 shows condition-wise Brainscores). (Center) Age
comparisonof linearBrainscorechanges under uncertainty (~agex load interaction;
p-values refer to unpaired t-tests). Both signatures exhibited significant uncertainty
modulation in younger, as well as older adults (as assessed via one-sample t-tests;

see Table S1), with constrainedmodulation in older adults. (Right) Time series data
are presented as means ±within-subject S.E.Ms. Target amount corresponds to
increasing color saturation. Orange shading in a indicates the timepoints across
which data have been averaged for the task PLS. Black lines in (b) indicate time
points exceeding a BSR of 3 (~99% threshold). The uncertainty modulation of pupil
diameter occurred on top of a general pupil constriction due to stimulus-evoked
changes in luminance upon task onset (see inset). Luminance did by stimulus
design not systematically differ across load levels.
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manipulate task uncertainty via unambiguous cues that are repeated
on each trial. This design allows us to ask how task uncertainty impacts
downstream processing, in contrast with prior designs that ask how
perceptually ambiguous task cues impact processing of unambiguous
inputs68,71–73. We show that healthy older adults exhibit markedly
dampened adaptations to explicit uncertainty variations across cou-
pled EEG/fMRI/pupil signatures. Our results thereby extend observa-
tions that older adults rely less onuncertainty representations to guide
internal computations16 by characterizing several plausible mechan-
isms for this shortfall. Specifically, our results suggest that such com-
putational constraints do not exclusively stem from an inadequate
sensitivity to latent uncertainty, as overt uncertainty cues were simi-
larly processed across age groups. Rather, our findings support the
maintenance account of cognitive and brain aging74, wherein indivi-
duals with brain responses more closely resembling younger adults
also more dynamically adjust perceptual and decision computations
according to momentary uncertainty.

Age differences in selecting features of multi-task stimuli
In our retro-cue design, evidence integration towards perceptual
choices indirectly indexes how multi-task stimuli were processed.
Older adults showed reduced modulation of evidence integration as a
function of uncertainty but were alsomarked by reduced drift rates in
response to single-target cues. This is consistent with age-related
problems of goal selection in the context of inherently ambiguous

multi-task stimuli13,14,75. Mayr (2001) indicated that “even when people
have complete knowledge about the type of action to perform in the
immediate future, they have problems implementing this knowledge
in an optimalmanner whenmore than one action rule may be relevant
in principle” (p. 105). TheMAAT’smulti-dimensional stimuli constantly
feature such rule ambiguity, thus requiring internal segregation and
prioritization among possible task goals. A question concerns the
relation of such “global set-selection costs” to working memory
capacity13,14,75, given thatmulti-task stimuli (and their cues) also require
maintenance of larger task sets. While theMAAT does not fully resolve
this debate (Supplementary Note 13), it uses single-trial cues and
homogeneous cue blocks to limit workingmemory demands. As such,
results for the single-target condition conceptually replicate prior
observations of large age differences in static set selection costs. In
tandem, our uncertainty manipulation indicates age differences in
dynamic task set management, indicated by reduced adjustment of
downstream decision processes and larger relative performance costs
in older as compared to younger adults.

Fronto-thalamic circuits may enable stable and flexible feature
selection across the adult lifespan
As part of the neural uncertainty response, we observed a behaviorally
relevant upregulation of anterior cingulate cortex (ACC) BOLD acti-
vation and (presumably ACC-based59,76) mediofrontal theta power. By
charting the progression through multiple task contexts77–79, the ACC

Fig. 5 | Only younger adults upregulate cortical excitability under increased
uncertainty. Results of task partial least squares (PLS) models, assessing relations
of alpha power (a), sample entropy (b) and aperiodic 1/f slope (c) to uncertainty.
(Left) Topographies indicatemean bootstrap ratios (BSR).Orange dots indicate the
sensors across which data were averaged for data visualization. (Center) Age
comparison of linear uncertainty effects (~age x uncertainty interaction). Statistics
refer to two-sided unpaired t-tests (younger N = 42, older N = 53; see Statistical
analyses). For condition-wise Brainscores, see Supplementary Fig. 10. All three

signatures exhibited significant uncertaintymodulation in younger,but not inolder
adults. Table S1 reports within-group statistics. (Right) Time series data for a and b
are presented as means ±within-subject S.E.M.s (younger N = 47, older N = 53).
Orange shading indicates the timepoints across which data have been averaged for
the respective task-PLS. For (c), average spectra during stimulus presentation are
shown as a function of the number of targets. Plots with gray and orange back-
ground highlight low- and high-frequency ranges, respectively.
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can estimate contextual volatility80 and uncertainty16,81 to guide
exploration of alternative goals, strategies, and attentional
targets60,82–84. Non-human animal studies suggest that high task
uncertainty switches ACC dynamics to a state of increased
excitability67,85 and stochastic activity86, which benefits concurrent
sensitivity to alternate task rules87. Also in humans, the ACC is sensitive
to stimulus features before they behaviorally guide task strategies86,88,
suggesting that the ACC contributes to the exploration of alternate
task strategies89,90. While our results align with such contribution, we
also localize high uncertainty sensitivity in the mediodorsal (MD)
thalamus, which aligns with the MD being a key partner for selecting,

switching, and maintaining cortical task representations23,91,92 espe-
cially in uncertain contexts that require multifaceted computational
adjustments30,68,69. Extrapolating from this emerging perspective, the
MD-ACC circuit may regulate the extent of task set stability vs.
flexibility93–95 according to contextual demands (Fig. 7a). Partial evi-
dence for such a notion is provided bymodels that link task stability in
low-uncertainty contexts to thalamic engagement96. The current
observations suggest a complementary thalamic role in flexible task
set management. While maintained across the adult lifespan, BOLD
and theta power signals indicated that such MD-ACC upregulation
dampened in older age97,98. Indeed, the ACC network is particularly

Fig. 6 | Multivariate relation of EEG/pupil/behavioral signatures to fMRI BOLD
uncertainty modulation. a Results of a behavioral partial least squares (PLS)
analysis linking linear changes in BOLD activation to interindividual EEG, pupil, and
behavioral differences. Table S4 lists peak coordinates. b The multivariate
expression of BOLD changes alongside rising uncertainty was reduced in older
(N = 53) compared with younger adults (N = 42). Table S1 reports within-group
statistics. c Individual fMRI Brainscore differences related to behavioral composite
scores, also after accounting for age covariation. Squares = younger individuals;
diamonds = older individuals. d Contributing signatures to the fMRI Brainscore. All
signature estimates refer to linear uncertainty changes. Data are presented asmean
values ± bootstrapped 95% confidence intervals (N = 1000 bootstraps). e Major
nuclei and projection zones in which behavioral relations are maximally reliable
according to average Bootstrap ratios (red) and the percentage of voxels in each
subregion exceeding a BSR of 3. See Methods for abbreviations. Strongest
expression is observed in nuclei that project to fronto-parietal cortical targets.
f Visualization of uncertainty modulation for the mediodorsal nucleus, a “higher
order” nucleus, and the LGN, a visual relay nucleus. Traces display mean± SEM, for
younger (red) and older adults (black), and varying target amount (broken: single,
continuous: four). The green shading indicates the approximate stimulus pre-
sentation period after accounting for the delay in the hemodynamic response
function.

Table 1 | Summary of Brainscore predictors, while controlling
for categorical age

Predictor t-value p value partial η2 95% CI

Behavioral
score

4.6043 <0.001 0.1962 [468, 1178]

age −6.3809 <0.001 0.3192 [−4023,−2113]

Drift mod. −4.3334 <0.001 0.2308 [−13515, −5020]

age −3.9624 <0.001 0.2006 [−3405, −1131]

Pupil mod. 4.171 <0.001 0.1622 [155, 437]

age −6.7664 <0.001 0.3375 [−4206, −2297]

Theta mod. 4.2533 <0.001 0.2005 [7852, 21,609]

age −4.8662 <0.001 0.2471 [−3664, −1540]

Alpha mod. 3.2185 0.002 0.1294 [3055, 12,900]

age −4.934 <0.001 0.2589 [−3901, −1662]

1/f mod. 0.10914 0.91 1.4e-04 [−10,338, 11,540]

age −6.7591 <0.001 0.3574 [−4782, −2610]

SampEn mod. 1.5944 0.11 0.0279 [−6618, 60,491]

age −6.7385 <0.001 0.3390 [−4534, −2470]

Separate linear-mixed-effects models assessed effects of target signature, categorical age, and
age x signature interactions on Brainscores. We observed no significant interaction in any of the
models (all p > 0.05), pointing to consistent relations across age groups; therefore, all reported
models only include main effects of signature and age. Supplementary Fig. 16 reports similar
results using partial regressions. Degrees of freedom: 92 (all models).
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Fig. 7 | Schematic model summary. a In static contexts, prefrontal-hippocampal
networksmay signal high confidence in the current task state, which enables stable
task sets, and a targeted processing of specific sensory representations with high
acuity. Such selective processing of specific task-relevant features benefits their
efficient evidence integration. Such selectivity would be suboptimal in contexts
with uncertain or changing task sets, however. An MD-ACC circuit may track such
uncertainty and enhance stochastic task set flexibility in changing or ambiguous
contexts. In coordination with posterior-parietal cortex, this feasibly enables more
diverse albeit less precise perceptual representations. b The neural system of
younger adults may more dynamically adjust feature fidelity during stimulus pre-
sentation to the degree of uncertainty. Observed effects align with a switch
between a specific high-acuity processing of individual features (blue), and a more
diverse, if less precise processing of multiple features (red; see also Thiele & Bell-
grove, 2018). In contrast, the aged neural system may be stuck in a suboptimal
middle ground that affords neither stable precision, nor flexible imprecision.mPFC
medial prefrontal cortex, HC hippocampus, ACC anterior cingulate cortex, MD
mediodorsal thalamus.
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susceptible to age-related metabolic declines35–37 as well as structural
atrophy44. Retained ACC function on the other hand is a hallmark of
cognitive reserve99, relates tomaintained executive function37, and is a
fruitful target of cognitive interventions in older adults98. Given evi-
dence of a key role of the MD thalamus in the coordination of ACC
engagement and our observations of reduced MD-ACC sensitivity to
uncertainty in older age, the thalamus may be an underappreciated
site for cascading age-related deficits in cognitive stability and
flexibility.

Neuromodulation may sculpt the dynamic range of uncertainty
adjustments
Neurotransmitter systems provide a candidate substrate for compu-
tational adjustments under uncertainty. In response to rising uncer-
tainty, phasic norepinephrine release can sensitize the system to
incoming signals100,101 by increasing neuro-behavioral activation61,102,103.
Pupil diameter, an index that is partially sensitive to noradrenergic
drive65, robustly increases alongside uncertainty during learning28 and
attention104, environmental exploration105, and change points in
dynamic environments28,66,106. Notably, increases have been observed
in contexts that require an agent to learn more or less about a single
option107; i.e., conditions in which sensitivity for one option increases.
Here, pupil increases precede decreases in evidence integration for
single features. Under the notion that uncertainty requires exploration
of a larger space of options, we argue that this is akin to a lower
learning rate for an individual feature at the benefit of distributed
learning across uncertain features. Non-selective gain increases, e.g.,
provided by global arousal, can favor such distributed learning108. We
observe that pupil sensitivity to rising uncertainty is retained across
the adult lifespan but dampens in older age. Such dampening hints at
declining noradrenergic responsiveness in older age41,109,110, arising
from reduced LC integrity111,112, and/or decreased LC engagement113.
Notably, pupil sensitivity to volatility has been related to the ACC as a
primary source of cortical LC input27,114, and joint increases of ACC
activation and pupil diameter in uncertain, or dynamic contexts has
consistently beenobserved in studies that recordboth signals2,29,30,63,64.
While future studies need to clarify the origin of constrained pupil
adjustments in older age, our results affirm the relevance of the
extended LC system for attentional function across the lifespan41. In
contrast to noradrenaline’s potential role in sensitizing, cholinergic
innervation from the basal forebrain may foster selectivity via cortical
gain increases115,116. Notably, basal forebrainBOLD activation decreased
under uncertainty alongside regions such as the medial prefrontal
cortex and hippocampus, that are sensitive to subjective confidence117,
suggesting that these regions may support stable task beliefs when
uncertainty is low85,118,119 (Fig. 7a). The constrained BOLD modulation
observed in older adults may thus point to reduced task set stability in
low-uncertainty contexts (Fig. 7b)11, plausibly because of limited cho-
linergic gain control. Similar ideas have been captured in the cortical
gain theory of aging120, but in the context of the dopamine system39,121.
Computational models and pharmacological studies indeed support a
role of dopamine availability in task set stability and flexibility122,123. For
instance, amphetamines (operating via the DA system) can in- and
decrease task set stability in ACC124,125 depending on baseline dopa-
mine levels in frontoparietal cortex and thalamus126. Given that our
results align with the fronto-thalamic system being a primary neural
substrate of cognitive aging39,45,127, the potential contribution of age-
related dopamine depletion to constrained uncertainty adjustments
deserves future clarification.

Excitability as a neural mechanism for acuity/sensitivity
trade-offs
Uncertainty motivates sensitivity to multiple features at the cost of
selective precision (or “acuity”)3. Our decoding results coherewith this
notion, suggesting that representationalfidelity depends onwhether a

feature is included in the current task set18, but also on competition
with other elements for shared neuro-computational resources128.
Excitability changes in parietal/sensory cortices provide a candidate
neural implementation for such trade-off. One index of (decreased)
cortical excitability is alpha power. Models suggest that broad alpha
power increases reflect active inhibition of irrelevant information129–133,
while targeted alpha desynchronization can selectively disinhibit
relevant information44. With advancing adult age, alpha power
decreases broadly, which has been linked to inhibitory filtering
deficits41,134–137 that manifest in maladaptive sensitivity also to
irrelevant7 and non-salient features138 of compound stimuli6. Decoding
and decision analyses indeed indicate that older adults’ task perfor-
mance suffered from reduced single-target information, in line with
selective filtering deficits139,140. Alpha desynchronization, in turn, is
thought to reflect increased sensitivity when multiple input features26

must be jointly tracked141,142 and retained in working memory143–146. In
addition to alpha power, aperiodic dynamics such as the spectral slope
of the EEG potential147 and signal entropy148 may also index levels of
neural excitability67,147. Here, we reproduce uncertainty-guided excit-
ability increases as indexed by all three signatures in younger adults30,
but find no evidence for a comparable modulation in older age. Such
deficit may be rooted in age-related declines of GABAergic
inhibition42,43. Aperiodic dynamics at rest suggest increased excitatory
tone in older age149–151, including in the current sample148. Such
imbalances152 may constrain the dynamic range of excitability mod-
ulation inolder age, both on- andoff-task33,153. It is alsopossible that the
consistently high level of perceptual uncertainty, i.e., the difficulty of
arbitrating between choice options of each feature, was overly taxing
especially for older participants. Based on behavioral and decoding
results, younger adults were indeed better able to arbitrate feature-
specific options across uncertainty levels, relative to older adults. In
this scenario, preserved excitability modulation may be observed if
choice evidence was less ambiguous for individual features. However,
performance on the Stroop task suggests that age-related deficits (and
individual differences) in feature selection generalize to contexts of
lowperceptual ambiguity.Moreover, variations inperceptual difficulty
across features could not explain inter-individual and age differences
in neural uncertaintymodulation. As perceptual uncertainty resolution
relies on partially dissociable circuits from those implicated in feature
selection154–156, future work needs to chart the ability to resolve either
type across the lifespan.

The role of working memory
It is notoriously challenging to distinguish the explanatory power of
competing functional mechanisms that could explain age-related dif-
ferences in cognition. In the current paradigm the manipulation of
uncertainty was accomplished by varying the number of potentially
relevant features, which arguably may also increase working memory
load. However, there are several reasons why we believe that uncer-
tainty is the primary driver of the observed pattern of results. First, the
increase of age differences was greatest when transitioning from one
to two possible features. While both one and two features should
remain well within working memory capacity, the difference between
these two conditions is highly significant on the uncertainty dimension
(i.e., the contrast between certainty and uncertainty). Further, our
reversed-inference analyses indicate that the neuroanatomical results
are more consistent with age effects in uncertainty processing than in
working-memory functioning. On a more theoretical level, it is
important to note that when it comes to aging, workingmemory is not
a simple, unidimensional construct. For example, the fact that age-
independent individual differences and age differences express
themselves in markedly different manners157–159, makes this construct
much less attractive as a general, candidate mechanism. Instead, an
age-related failure to dynamically respond to varying uncertainty has
the potential of providing a unifying explanation of age differences
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across paradigms and domains, and thus can serve as a useful lens on
healthy cognitive ageing. Given that uncertainty provides a signal for
adaptive control per se, our observation that uncertainty-based con-
trol provides a principled challenge for the aged brain highlights the
need to better understand how the brain estimates and computa-
tionally leverages uncertainty signals across the lifespan.

Methods
Sample
47 healthy young adults (meanage = 25.8 years, SD = 4.6, range 18 to 35
years; 25 women) and 53 healthy older adults (mean age = 68.7 years,
SD = 4.2, range 59 to 78 years; 28 women) performed a perceptual
decision task during 64-channel active scalp EEG acquisition. 42
younger adults and all older adults returned for a subsequent 3 T fMRI
session. We recruited a combined total of N = 100 participants, with
approximately age-matched and gender-matched sample sizes
informed by our prior inter-individual work30. Gender of participants
was determined based on self-report. Participants were recruited from
the participant database of the Max Planck Institute for Human
Development, Berlin, Germany (MPIB). Participantswere right-handed,
as assessed with a modified version of the Edinburgh Handedness
Inventory160, and had normal or corrected-to-normal vision. Partici-
pants reported to be in good health with no known history of neuro-
logical or psychiatric incidences and were paid for their participation
(10 € per hour). All older adults had Mini Mental State Examination
(MMSE)161,162 scores above 25. The ethics board of the Deutsche
Gesellschaft für Psychologie (DGPs) approved the study protocol
(“Flexibles Denken - State Switch”). All participants gave their written
informed consent prior to participating in the study.

Procedure: EEG Session
Participants were seated 60 cm in front of a monitor in an acoustically
and electrically shielded chamber with their heads placed on a chin
rest. Following electrode placement, participants were instructed to
rest with their eyes open and closed, each for 3min. Afterwards, par-
ticipants performed a Stroop task (see below), followed by the visual
attention task instruction & practice (see below), the performance of
the task and a second Stroop assessment. Stimuli were presented on a
60Hz 1920 × 1080p LCD screen (AG Neovo X24) using PsychToolbox
3.0.11163–165. The session lasted ~3 h. EEG was continuously recorded
from 60 active (Ag/AgCl) electrodes using BrainAmp amplifiers (Brain
Products GmbH, Gilching, Germany). Scalp electrodes were arranged
within an elastic cap (EASYCAP GmbH, Herrsching, Germany) accord-
ing to the 10% system166, with the groundplaced atAFz. Tomonitor eye
movements, twoadditional electrodeswere placed on the outer canthi
(horizontal EOG) and one electrode below the left eye (vertical EOG).
During recording, all electrodes were referenced to the right mastoid
electrode, while the left mastoid electrode was recorded as an addi-
tional channel. Online, signals were digitized at a sampling rate of
1 kHz. In addition to EEG, we simultaneously tracked eye movements
and assessed pupil diameter using EyeLink 1000+ hardware (SR
Research, v.4.594) with a sampling rate of 1 kHz.

Procedure: MRI session
A second testing session included structural and functional MRI
assessments. First, participants received a short refresh of the task
(“MAAT”, see below) instructions and practiced the task outside the
scanner. Then, participants were placed in the TimTrio 3 T scanner and
were instructed in the button mapping. We collected the following
sequences: T1w, task (4 runs), T2w, resting state, DTI, with a 15minout-
of-scanner break following the task acquisition. The session lasted ~3 h.
Whole-brain task fMRI data (4 runs á ~11.5min, 1066 volumes per run)
were collected via a 3 T Siemens TrioTim MRI system (Erlangen, Ger-
many) using a multi-band EPI sequence (factor 4; TR = 645ms;
TE = 30ms; flip angle 60°; FoV= 222mm; voxel size 3 × 3× 3mm; 40

transverse slices. The first 12 volumes (12 × 645ms= 7.7 s) were
removed to ensure a steady state of tissue magnetization (total
remaining volumes = 1054 per run). A T1-weighted structural scan
(MPRAGE: TR = 2500ms; TE = 4.77ms; flip angle 7°; FoV = 256mm;
voxel size 1 × 1 × 1mm; 192 sagittal slices) and a T2-weighted structural
scan were also acquired (GRAPPA: TR= 3200ms; TE = 347ms;
FoV = 256mm; voxel size 1 × 1 × 1mm; 176 sagittal slices).

The multi-attribute attention task (“MAAT”)
TheMAAT requires participants to sample up to four visual features in
a compound stimulus, in the absence of systematic variation in
bottom-up visual stimulation (see Fig. 1). Participants were shown a
dynamic stimulus that combined four features of visual squares: their
color (red/green), movement direction (left, right), size (small, large)
and saturation (low, high). The task incorporates features from ran-
dom dot motion tasks which have been extensively studied in both
animal models167–169 and humans55,170. Following stimulus presentation,
a probe queried the prevalence of one feature (e.g., color: whether the
stimulus contained more red or green squares) via 2-AFC (alternative
forced choice). Before stimulus onset, a valid cue informed partici-
pants about the feature set, out of which the probe feature would be
selected.We parametricallymanipulated task uncertainty by including
between one and four features in the cue. Participants were instructed
to respondas fast and accurately aspossible to increase their chanceof
bonus. They were instructed to use cue information to guide their
attention during stimulus presentation between “focusing on a single
feature” vs. “considering multiple features” to optimally prepare for
the upcoming probe.

The perceptual difficulty of each feature was determined by (a)
sensory differences between the two options and (b) the relative evi-
dence for either option. For (a) the following values were used: high
(RGB: 128, 255, 0) and low saturation green (RGB: 192, 255, 128) and
high (RGB: 255, 0, 43) and low saturated red (RGB: 255, 128, 149) for
color and saturation, 5 and 8 pixels for size differences and a coher-
ence of 0.2 for directions. For (b) the relative choice evidence was
chosen as follows: color: 60/40; direction: 80/20; size: 65/35; satura-
tion: 60/40. Parameter difficulty was established in a pilot population,
with the aim toproduceabove-chance accuracy for individual features.
Parameterswere held constant across age groups to equate bottom-up
inputs.

Each session included four approx. 10min task runs, each
including eight blocks of eight trials (i.e., a total of 32 trial blocks; 256
trials). The size and constellation of the cue set was held constant
within eight-trial blocks to reduce set switching and working memory
demands. At the onset of each block, the valid cue set, composed of
one to four target features, was presented for 5 s. Each trial was
structured as follows: recuing phase (1 s), fixation phase (2 s), dynamic
stimulus phase (3 s), probe phase (incl. response; 2 s); ITI (un-jittered;
1.5 s). At the offset of each block, participants received performance
feedback for 3 s. The four features spanned a constellation of 16 fea-
ture combinations (4 × 4), of which presentation frequency was mat-
ched within participants. The size and type of the cue set was pseudo-
randomized: Within each run, every set size was presented once, but
never directly following a block of the same set size. In every block,
each feature in the active set acted as a probe in at least one trial.
Moreover, any feature served as a probe equally often across blocks.
The dominant options for each feature were counterbalanced across
all trials of the experiment. To retain high motivation during the task
and encourage fast and accurate responses, we instructed participants
that one response would randomly be drawn at the end of each block;
if this response was correct and faster than the mean RT during the
preceding block, they would earn a reward of 20 cents. However, we
pseudo-randomized feedback such that all participants received an
additional fixed payout of 10 € per session. This bonus was paid at the
end of the second session, at which point participants were debriefed.
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Stroop performance
Participants performed a voiced Stroop task before and after the
mainMAAT task in the EEG session. EEG signals were acquired during
task performance. Two older adults did not complete the second
Stroop acquisition. In the Stroop task, we presented three words
(RED, GREEN, BLUE) either in the congruent or incongruent display
color. Each of the two runs consisted of 81 trials, with fully matched
combinations, i.e., 1/3rd congruent trials. Stimuli were presented for
two seconds, followed by a one-second ITI with a centrally presented
fixation cross. Participants were instructed to indicate the displayed
color as fast and accurately as possible following stimulus onset by
speaking into a microphone. During analysis, speech on- and offsets
were pre-labeled automatically using a custom tool (Computer-
Assisted Response Labeler (CARL); doi: 10.5281/zenodo.7505622),
and manually inspected and refined by one of two trained labelers.
Voiced responses were manually labeled using the CARL GUI. Speech
onset times (SOTs) were highly reliable across two Stroop sessions
preceding and following the MAAT (r = 0.83, p = 5e-26), as were
individual interference costs (r = 0.64, p = 5e-13). We therefore aver-
aged SOTs estimates across both runs, where available. For EEG
analyses, single-trial time series were aligned to SOTs, and averaged
according to coherence conditions. The centroparietal positive
potential was extracted from channel POz, at which we observed a
maximum potential during the average 300ms prior to SOT (see
inset in Fig. 3a).

Behavioral estimates of probe-related decision processes
Sequential sampling models, such as the drift-diffusion model, have
been used to characterize evolving perceptual decisions in 2-AFC
random dot motion tasks55, memory retrieval171, and probabilistic
decision making172. We estimated individual evidence integration
parameters within the HDDM 0.6.0 toolbox54 to regularize relatively
sparse within-subject data with group priors based on a large number
of participants. Premature responses faster than 250mswere excluded
prior to modeling, and the probability of outliers was set to 5%. 7000
Markov-Chain Monte Carlo samples were sampled to estimate para-
meters, with the first 5000 samples being discarded as burn-in to
achieve convergence. We judged convergence for each model by
visually assessing both Markov chain convergence and posterior pre-
dictive fits. Individual estimates were averaged across the remaining
2000 samples for follow-up analyses. We fitted data to correct and
incorrect RTs (termed “accuracy coding” in Wiecki, et al.54). To explain
differences in decision components, we compared four separate
models. In the ‘full model’, we allowed the following parameters to
vary between conditions: (i) the mean drift rate across trials, (ii) the
threshold separation between the two decision bounds, (iii) the non-
decision time, which represents the summed duration of sensory
encoding and response execution. In the remaining models, we
reduced model complexity, by only varying (a) drift, (b) drift +
threshold, or (c) drift + NDT, with a null model fixing all three para-
meters. For model comparison, we first used the Deviance Informa-
tion Criterion (DIC) to select themodel which provided the best fit to
our data. The DIC compares models based on the maximal log-
likelihood value, while penalizing model complexity. The full model
provided the best fit to the empirical data based on the DIC index
(Supplementary Fig. 3c) in both the EEG and the fMRI session, and in
either age group. Posterior predictive checks indicated a suitable
recovery of behavioral effects using this full solution. Given the
observation of high reliability between sessions30 (see Supplemen-
tary Fig. 3), we averaged parameter estimates across the EEG and
fMRI sessions for the main analysis. In contrast with previous work30,
we did not constrain boundary separation estimates173 here given our
observation of CPP threshold differences in older adults. See also
Supplementary Note 1 for a brief discussion of NDT and boundary
separation.

EEG preprocessing
Preprocessing and analysis of EEG data were conducted with the
FieldTrip toolbox (v.20170904)174 and using custom-written MATLAB
(The MathWorks Inc., Natick, MA, USA) code. Offline, EEG data were
filtered using a 4th order Butterworth filter with a passband of 0.5 to
100Hz. Subsequently, data were downsampled to 500Hz and all
channels were re-referenced to mathematically averaged mastoids.
Blink, movement and heart-beat artifacts were identified using Inde-
pendent Component Analysis (ICA175); and removed from the signal.
Artifact-contaminated channels (determined across epochs) were
automatically detected using (a) the FASTER algorithm176, and by (b)
detecting outliers exceeding three standard deviations of the kurtosis
of the distribution of power values in each epochwithin low (0.2–2Hz)
or high (30–100Hz) frequency bands, respectively. Rejected channels
were interpolated using spherical splines177. Subsequently, noisy
epochs were likewise excluded based on a custom implementation of
FASTER and on recursive outlier detection. Finally, recordings were
segmented to stimulus onsets and were epoched into separate trials.
To enhance spatial specificity, scalp current density estimates were
derived via 4th order spherical splines177 using a standard 1005 channel
layout (conductivity: 0.33 S/m; regularization: 1^-05; 14th degree
polynomials).

Electrophysiological estimates of probe-related decision
processes
Centro-Parietal Positivity (CPP). The Centro-Parietal Positivity (CPP)
is an electrophysiological signature of internal evidence-to-bound
accumulation55,173,178. We investigated the task modulation of this
established signature and assessed its convergence with behavioral
parameter estimates. To derive the CPP, preprocessed EEG data were
low-pass filtered at 8Hz with a 6th order Butterworth filter to exclude
low-frequency oscillations, epoched relative to response and averaged
across trials within each condition. In accordance with the literature,
this revealed a dipolar scalp potential that exhibited a positive peak
over parietal channel POz (Fig. 1c). We temporally normalized indivi-
dual CPP estimates to a condition-specific baseline during the final
250ms preceding probe onset. As a proxy of evidence drift rate, CPP
slopes were estimates via linear regression from −250ms to −100ms
surrounding response execution, while the average CPP amplitude
from −50ms to 50ms served as an indicator of decision thresholds
(i.e., boundary separation; e.g.,173).

Contralateral mu-beta. Decreases in contralateral mu-beta power
provide a complementary, effector-specific signature of evidence
integration56,173. We estimated mu-beta power using 7-cycle wavelets
for the 8–25Hz range with a step size of 50ms. Spectral power was
time-locked to probe presentation and response execution. We re-
mapped channels to describe data recorded contra- and ipsi-lateral to
the executed motor response in each trial, and averaged data from
those channels to derive grand average mu-beta time courses. Indivi-
dual average mu-beta time series were baseline-corrected using the
−400 to −200ms prior to probe onset, separately for each condition.
For contralateral motor responses, remapped sites C3/5 and CP3/CP5
were selected based on the grand average topography for lateralized
response executions (see inset in Supplementary Fig. 7a). Mu-beta
slopes were estimated via linear regression from −250ms to −50ms
prior to response execution, while the average power from −50ms to
50ms indexed decision thresholds (e.g.,173).

Electrophysiological indices of top-down modulation during
sensation
Low-frequency alpha and theta power. We estimated low-frequency
power via a 7-cycle wavelet transform (linearly spaced center fre-
quencies; 1 Hz steps; 2 to 15Hz). The step size of estimates was 50ms,
ranging from −1.5 s prior to cue onset to 3.5 s following stimulus offset.
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Estimates were log10-transformed at the single trial level179, with no
explicit baseline-correction. For statistics, data were averaged across
time windows of interest (see respective Figure captions) and entered
a task-PLS analysis (see “Multivariate partial least squares analyses”) to
quantify the magnitude of power modulation as a function of target
load without the need to pre-specify relevant channels.

Steady State Visual Evoked Potential (SSVEP). The SSVEP char-
acterizes the phase-locked, entrained visual activity (here 30Hz) dur-
ing dynamic stimulus updates (e.g.,180). These features differentiate it
from induced broadband activity or muscle artefacts in similar fre-
quency bands. We used these properties to normalize individual
single-trial SSVEP responses prior to averaging: (a) we calculated an
FFT for overlapping one second epochs with a step size of 100ms
(Hanning-based multitaper) and averaged them within each uncer-
tainty condition; (b) spectrally normalized 30Hz estimates by sub-
tracting the average of estimates at 28 and 32Hz, effectively removing
broadband effects (i.e., aperiodic slopes), and; (c) we subtracted a
temporal baseline −700 to −100ms prior to stimulus onset. Linear
uncertainty effects on SSVEPs were assessed by paired t-tests on linear
uncertainty slope estimates across posterior channel averages.

Time-resolved sample entropy. Sample entropy181 quantifies the
irregularity of a time series of length N by assessing the conditional
probability that two sequences of m consecutive data points will
remain similarwhen another sample (m + 1) is included in the sequence
(for a visual example see Fig. 1a in ref. 148). Sample entropy is defined
as the inverse natural logarithm of this conditional similarity: The
similarity criterion (r) defines the tolerancewithinwhich twopoints are
considered similar and is defined relative to the standard deviation
(~variance) of the signal (here set to r = 0.5). We set the sequence
lengthm to 2, in line with previous applications148. An adapted version
of sample entropy calculations implemented in the mMSE toolbox
(available from https://github.com/LNDG/mMSE; 10.5281/
zenodo.4672138) was used148,182, wherein entropy is estimated across
discontinuous data segments to provide time-resolved estimates. The
estimation of scale-wise entropy across trials allows for an estimation
of coarse scale entropy also for short time-bins (i.e., without requiring
long, continuous signals), while quickly converging with entropy esti-
mates from continuous recordings183. To remove the influence of
posterior-occipital low-frequency rhythms on entropy estimates, we
notch-filtered the 8–15Hz alpha band using 6th order Butterworth
filter prior to the entropy calculation148. Time-resolved entropy esti-
mates were calculated for 500ms windows from −1 s pre-stimulus to
1.25 s post-probe with a step size of 150ms. As entropy values are
implicitly normalized by the variance in each time bin via the similarity
criterion, no temporal baseline correction was applied.

Aperiodic (1/f) slopes. The aperiodic 1/f slope of neural recordings is
closely related to the sample entropy of broadband signals148 and has
been suggested as a proxy for cortical excitation-inhibition balance147.
Spectral estimates were computed by means of a Fast Fourier Trans-
form (FFT) over the final 2.5 s of the presentation period (to exclude
onset transients) for linearly spaced frequencies between 2 and 80Hz
(step size of 0.5 Hz; Hanning-tapered segments zero-padded to 20 s)
and subsequently averaged. Spectral power was log10-transformed to
render power values more normally distributed across participants.
Power spectral density (PSD) slopes were estimated using the fooof
toolbox (v1.0.0-dev) using default parameters184.

Pupil diameter. Pupil diameter was recorded during the EEG session
using EyeLink 1000 at a sampling rate of 1000Hz and was analyzed
using FieldTrip and custom-written MATLAB scripts. Blinks were
automatically indicated by the EyeLink software (version 4.40). To
increase the sensitivity to periods of partially occluded pupils or eye

movements, the first derivative of eye-tracker-based vertical eye
movements was calculated, z-standardized, and outliers >=3 STD were
removed. We additionally removed data within 150ms preceding or
following indicated outliers. Finally, missing data were linearly inter-
polated, and data were epoched to 3.5 s prior to stimulus onset to 1 s
following stimulus offset. We quantified phasic arousal responses via
the rate of change of pupil diameter traces as this measure (i) has
higher temporal precision and (ii) has been more strongly associated
with noradrenergic responses than the overall response185. We down-
sampled pupil timeseries to 100Hz. First derivative pupil traces were
smoothed using a 300ms moving median. For statistics, timeseries
were entered into a task-PLS (see “Multivariate partial least squares
analyses”) to quantify themagnitude of pupilmodulation as a function
of target load without the need to pre-specify a relevant time window.

fMRI-based analyses
Preprocessing of functional MRI data. fMRI data were preprocessed
with FSL 5 (RRID:SCR_002823)186,187. Pre-processing included motion
correction using McFLIRT, smoothing (7mm) and high-pass filtering
(.01 Hz) using an 8th order zero-phase Butterworth filter applied using
MATLAB’s filtfilt function. We registered individual functional runs to
the individual, ANTs brain-extracted T2w images (6 DOF), to T1w
images (6 DOF) and finally to 3mm standard space (ICBM 2009c
MNI152 nonlinear symmetric)188 using nonlinear transformations in
ANTs 2.1.0189 (for one participant, no T2w image was acquired and 6
DOF transformation of BOLD data was preformed directly to the T1w
structural scan). We then masked the functional data with the ICBM
2009c GM tissue prior (thresholded at a probability of 0.25), and
detrended the functional images (up to a cubic trend) using SPM12’s
spm_detrend.We alsoused a series of extendedpreprocessing steps to
further reduce potential non-neural artifacts153,190. Specifically, we
examined data within-subject, within-run via spatial independent
component analysis (ICA) as implemented in FSL-MELODIC191. Due to
the high multiband data dimensionality in the absence of low-pass
filtering, we constrained the solution to 30 components per partici-
pant. Noise components were identified according to several key cri-
teria: (a) Spiking (components dominated by abrupt time series
spikes); (b) Motion (prominent edge or “ringing” effects, sometimes
[but not always] accompanied by large time series spikes); (c) Sus-
ceptibility and flow artifacts (prominent air-tissue boundary or sinus
activation; typically represents cardio/respiratory effects); (d) White
matter (WM) and ventricle activation192; (e) Low-frequency signal
drift193; (f) High power in high-frequency ranges unlikely to represent
neural activity ( ≥ 75% of total spectral power present above 0.10Hz;);
and (g) Spatial distribution (“spotty” or “speckled” spatial pattern that
appears scattered randomly across ≥25% of the brain, with few if any
clusters with ≥ 80 contiguous voxels). Examples of these various
components we typically deem to be noise can be found in ref. 194. By
default, we utilized a conservative set of rejection criteria; if manual
classification decisions were challenging due to mixing of “signal” and
“noise” in a single component, we generally elected to keep such
components. Three independent raters of noise components were
utilized; >90% inter-rater reliability was required on separate data
before denoising decisions were made on the current data. Compo-
nents identified as artifacts were then regressed from corresponding
fMRI runs using the regfilt command in FSL. To reduce the influence of
motion and physiological fluctuations, we regressed FSL’s 6 DOF
motion parameters from the data, in addition to average signal within
white matter and CSF masks. Masks were created using 95% tissue
probability thresholds to create conservative masks. Data and regres-
sors were demeaned and linearly detrended prior to multiple linear
regression for each run. To further reduce the impact of potential
motion outliers, we censored significant DVARS outliers during the
regression as described by ref. 195. We calculated the ‘practical sig-
nificance’ of DVARS estimates and applied a threshold of 5196. The
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regression-based residuals were subsequently spectrally interpolated
during DVARS outliers as described in ref. 195 and197. BOLD analyses
were restricted to participants with both EEG and MRI data available
(N = 42 YA, N = 53 OA).

fMRI decoding of prevalent feature options. We performed a
decoding analysis to analyze the extent to which participants’ visual
cortices contained information about the prevalent option of each
feature. N = 2 older adults with two missing runs each were excluded
from this analysis due to themore limited number of eligible trials. We
trained a decoder based on BOLD signals from within a visual cortex
mask that included Jülich parcellations ranging fromV1 to areaMT.We
resliced the mask to 3mm and created an intersection mask with the
cortical graymattermask used throughout the remaining analyses. For
classification analyses, we used linear support-vector machines
(SVM)198 implemented with libsvm (www.csie.ntu.edu.tw/~cjlin/
libsvm). As no separate session was recorded, we trained classifiers
based on all trials (across uncertainty conditions) in which the target
feature was probed, therefore necessitating but not exhaustively
capturing trials on which the respective feature was also cued. By
experimental design, the number of trials in which a target featurewas
probed was matched across uncertainty levels. We used a bootstrap
classification approach in the context of leave-one-out cross-validation
to derive single-trial estimates of decoding accuracy. To increase the
signal-to-noise ratio for the decoders, we averaged randomly selected
trials into three folds (excluding any trial used for testing) and con-
catenated two pseudo-trials from each condition to create the training
set. Trained decoders were then applied to the left-out trial. This train-
and-test procedure was randomly repeated 100 times to create boot-
strapped single-trial estimates. Finally, decoding accuracy was aver-
aged across trials basedon condition assignment (e.g., whether a given
feature was cued or uncued). To assess above-chance decoding accu-
racy in time, we used univariate cluster-based permutation analyses
(CBPAs). These univariate tests were performed by means of depen-
dent samples t-tests, and cluster-based permutation tests199 were
performed to control for multiple comparisons. Initially, a clustering
algorithm formed clusters based on significant t-tests of individual
data points (p <0.05, two-sided; cluster entry threshold) with the
spatial constraint of a cluster covering a minimum of three neighbor-
ing channels. Then, the significance of the observed cluster-level sta-
tistic (based on the summed t-values within the cluster) was assessed
by comparison to the distribution of all permutation-based cluster-
level statistics. The final cluster p value was assessed as the proportion
of 1000 Monte Carlo iterations in which the cluster-level statistic was
exceeded. Cluster significance was indicated by p-values below 0.025
(two-sided cluster significance threshold). To test uncertainty and age
effects, we initially fitted linear mixed effects models with random
intercepts and fixed effects of uncertainty, age, and an uncertainty x
age interaction. As no significant interaction was indicated for any of
the models (probed: p =0.760; unprobed: p = 0.434; all: p =0.625), we
removed the interaction term for the main effect estimation. We
constrained analysis to timepoints for which the cluster-based per-
mutation analysis indicated above-chance decoding for cued features
(Fig. 2a; 4.5–11.5 s post-stimulus onset). We focused on probed and
unprobed feature trials, as they are matched in trial number at each
uncertainty level.

BOLD uncertainty modulation and relation to multi-modal sig-
natures. We conducted a 1st level analysis using SPM12 to identify beta
weights for each condition separately. Design variables included sti-
mulus presentation (4 volumes; separate regressors for each uncer-
tainty condition; parametrically modulated by sequence position),
onset cue (nomod.), and probe (2 volumes, parametric modulation by
RT). Design variables were convolved with a canonical HRF, including
its temporal derivative as a nuisance term. Nuisance regressors

included 24 motion parameters200, as well as continuous DVARS esti-
mates. Autoregressive modeling was implemented via FAST. Output
beta images for each uncertainty condition were finally averaged
across runs. At the group (2nd) level, we examined the relationship
between voxel-wise 1st level beta weights and uncertainty conditions
within a task PLS analysis; and probed links between linear BOLD
modulation and interindividual differences in multi-modal signatures
of interest via a behavioral PLS (see Multivariate partial least squares
analyses). For visualization, spatial clusters were defined based on a
minimum distance of 10mm, and by exceeding a size of 25 voxels. We
identified regions associated with peak activity based on cytoarchi-
tectonic probabilistic maps implemented in the SPM Anatomy Tool-
box (Version 2.2c)201. If no assignment was found, the most proximal
assignment to the peak coordinates was reported.

Temporal dynamics of thalamic engagement. To visualize the
uncertainty modulation of thalamic activity, we extracted signals
within a binary mask of thalamic divisions extracted from the Morel
atlas202. Preprocessed BOLD timeseries were segmented into trials,
spanning the period from the stimulus onset to the onset of the
feedback phase. Given a time-to-peak of a canonical hemodynamic
response function (HRF) between 5 and 6 s, we designated the 3 s
interval from 5 to 8 s following the stimulus onset trigger as the sti-
mulus presentation interval, and the 2 s interval from 3 to 5 s as the
fixation interval, respectively. Single-trial time series were then tem-
porally normalized to the temporal average during the approximate
fixation interval.

Thalamic loci of behavioral PLS. To assess the thalamic loci of most
reliable behavioral relations, we assessed bootstrap ratios within two
thalamic masks. First, for nucleic subdivisions, we used the Morel
parcellation scheme as consolidated and kindly provided by Hwang
et al. 203 for 3mm data at 3 T field strength. The abbreviations are as
follows: AN: anterior nucleus; VM: ventromedial; VL: ventrolateral;
MGN: medial geniculate nucleus; LGN: lateral geniculate nucleus; MD:
mediodorsal; PuA: anterior pulvinar; LP: lateral-posterior; IL: intra-
laminar; VA: ventral-anterior; PuM: medial pulvinar; Pul: pulvinar
proper; PuL: lateral pulvinar. Second, to assess cortical white-matter
projections we considered the overlap with seven structurally derived
cortical projection zones suggested by Horn & Blankenburg204, which
were derived from a large adult sample (N = 169). We binarized con-
tinuous probability maps at a relative 75% threshold of the respective
maximum probability, and re-sliced masks to 3mm (ICBM 2009c
MNI152).

Statistical analyses
Outlier handling. For each signature, we defined outliers at the
subject-level as individuals within their respective age group whose
values (e.g., estimates of linear modulation) exceeded three scaled
median absolute deviations (MAD) as implemented in MATLAB. Such
individual data points were winsorized prior to statistical analysis. For
repeated measures analyses, such individuals were removed prior to
statistical assessment.

Linear uncertainty effect estimates. To estimate the linear uncer-
tainty modulation of dependent variables, we calculated 1st level beta
estimates (y = intercept+β*target load+e) and assessed the slope dif-
ference from zero at the within-group level (see Table S1) using two-
sided paired t-tests. Similarly, we compared linear uncertainty effect
estimates between groups using two-sided unpaired t-tests. We
assessed the relation of individual linear load effects between mea-
sures of interest via Pearson correlations.

Within-subject centering. To visually emphasize effects within parti-
cipants, we use within-subject centering across repeated measures
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conditions by subtracting individual cross-condition means and add-
ing global groupmeans. For these visualizations, only the mean of the
dependent values directly reflects the original units of measurement,
as individual data points by construction do not reflect between-
subject variation averaged across conditions. This procedure equals
the creation of within-subject standard errors205. Within-subject cen-
tering is exclusively used for display and explicitly noted in the
respective legends.

Multivariate partial least squares analyses. For data with a high-
dimensional structure, we performedmultivariate partial least squares
analyses. PLS is a multivariate statistical technique used to identify
relationships between two sets of variables. In neuroimaging studies,
task PLS is often employed to relate brain activity (measured by
techniques like fMRI, EEG, or MEG) to experimental conditions (task
PLS) or behavioral measures (behavioral PLS)206,207.

To assess main effects of uncertainty, we performed Task PLS
analyses. Task PLS begins by calculating a between-subject covariance
matrix (COV) between conditions and a ‘neural’ index. This covariance
matrix is then decomposed using singular value decomposition (SVD).
This yields a left singular vector of experimental conditionweights (U),
a right singular vector of brain weights (V), and a diagonal matrix of
singular values (S). Task PLS produces orthogonal latent variables
(LVs) that reflect optimal relations between experimental conditions
(e.g., target load) and (neural) data of interest. We ran a task PLS ver-
sion in which group means were removed from condition means to
highlight how conditions were modulated by group membership, i.e.,
condition and condition-by-group effects. Separate task PLS analyses
were performed for ‘neural’ values of theta power (Fig. 4), pupil dia-
meter (Fig. 4), excitability signatures (Fig. 5), and pre-stimulus alpha
power (Supplementary Fig. 14), fMRI BOLD (Supplementary Fig. 15).

To examine multivariate relations between BOLD signal changes
under uncertainty and interindividual differences in decision, excit-
ability, and pupil modulation, we performed a behavioral PLS analysis
(Fig. 6). This analysis initially calculates a between-subject correlation
matrix (CORR) between (1) a ‘neural’ index and (2) a ‘behavioral’ variable
of interest (although called ‘behavioral’, this variable can reflect any
variable of interest). As the neural index, we estimated linear coeffi-
cients between 1st level beta estimates ~uncertainty, fitted within each
voxel. As behavioral variables, we included the signatures reported on
the left of Fig. 6c, incl. drift estimates, pupil diameter, spectral power,
and excitability indices). Analogous to task PLS, CORR is decomposed
using SVD: SVDCORR =USV´, which produces a matrix of left singular
vectors of behavioral weights (U), a matrix of right singular vectors of
neural weights (V), and a diagonal matrix of singular values (S).

Across PLS variants, each LV (ordered strongest to weakest in S) is
characterized by a data pattern that depicts the strongest available
relation between brain and conditions/behavioral data. Significance of
detected relations of both PLS model types was assessed using 1000
permutation tests of the singular value corresponding to the LV.
Subsequent bootstrapping indicated the robustness of within-LV
neural saliences across 1000 data resamples208. By dividing each
brain weight (from V) by its bootstrapped standard error, we obtained
“bootstrap ratios” (BSRs) as normalized robustness estimates. We
generally threshold BSRs at values of ±3.00 (~99.9% confidence inter-
val). We obtained a summary measure of each participant- and
condition-wise expression of a LV’s pattern (a “Brainscore”) by multi-
plying the vector of weights (V) by each participant’s and condition’s
vector of input data values (P): Brainscore =VP´. To summarize
uncertainty modulation, task PLS Brainscores were analyzed as
described above (“Linear uncertainty effect estimates”).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw EEG, fMRI, and behavioral data generated in this study have
been deposited as DataLad datasets (https://doi.org/10.5281/zenodo.
14264868). Structural MRI data are available under restricted access
for data privacy reasons as per obtained informed consent. Defaced
structural MRI data can be obtained after signing an access agreement
with Research Data Management (rdm@mpib-berlin.mpg.de). Inter-
ested parties should contact the corresponding authors for more
information.

Code availability
Experimental task code is available from https://doi.org/10.5281/
zenodo.14216065. Analysis code is available from https://doi.org/10.
5281/zenodo.14221999.
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Supplementary Figure 1. Examples of design phases. The top illustrates a trial sequence of the low uncertainty 
condition. Here, a single feature cue provides specific advance information about the upcoming probe. The bottom 
illustrates a trial sequence for the maximum uncertainty condition, in which all four features are cued in parallel. 
Amongst the cued features, a single feature will be selected as probe with equal probability. For all conditions, the cue 
remains identical for eight subsequent trials (= a cue block). Feature cues and probes are indicated by their respective 
icons.  
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Supplementary Figure 2. Average accuracy 
across uncertainty conditions. Younger (N = 42) 
and older (N = 53) adults on average performed the 
task above chance for all features that were probed. 
Statistics are based on one sample t-tests against 
chance level (0.5 in this 2AFC task). Estimates are 
averaged across EEG and fMRI sessions. *** p < 
.001.  
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Supplementary Figure 3. Age-related uncertainty adjustments to decision processes. (a) DIC-based model 
comparison indicates that a model, including uncertainty modulation of drift rates, non-decision times, and boundary 
separation provides the best group fit to the behavioral data. (b) Posterior predictive checks for the full model (shown 
for the EEG session). Negative RTs indicate incorrect responses. Model-based (“posterior predictive”) values were 
sampled 50 times within each participant and condition (as implemented in the HDDM package), and probability 
density (100 RT bins) was estimated first within-subject across all samples, and then averaged across participants. In 
empirical data, probability densities were estimated across all participants due to the sparse within-subject RT counts. 
(c) Uncertainty modulation of HDD parameter estimates, averaged across sessions. Statistics refer to paired t-tests of 
linear slopes against zero. Data are within-subject centered. (d) Age comparison of single-target parameter estimates 
(left) and linear uncertainty effects (~age x target load interaction). Statistics refer to unpaired t-tests. Nyounger = 42, 
Nolder = 53.  
 
Supplementary Note 1 
Uncertainty and age effects on non-decision time and boundary separation. The main analyses targeted drift 
rate as the main parameter of interest. Given that the best-fitting model (Supp. Fig. 3ab) included uncertainty variation 
also for non-decision times as well as boundary separation, we explored the potential variation of the latter two 
parameters with age and uncertainty (Supp. Fig. 3c). In contrast with younger adults, older adults had significantly 
longer non-decision times, and larger boundary separation, suggesting that more evidence was collected prior to 
committing to a choice. There is some evidence from 2AFC tasks that older adults adopt decision boundaries that are 
wider than the boundaries of younger adults 1,2 [but see 3], which may signify increased response caution. In both age 
groups, we observed uncertainty-related increases in non-decision times, albeit more constrained in older adults, as 
well as similar increases in boundary separation as a function of rising uncertainty (see Supp. Fig. 3d). Notably, the 
uncertainty effect on boundary separation was not consistently reproduced by either the integration threshold of the 
domain-general CPP (Supp. Fig. 6b), or the effector-specific contralateral beta power threshold (Supp. Fig. 7d), 
highlighting uncertainty regarding the true effect on behavioral response caution, or neural proxy signatures thereof. 
These discrepancies deserve further attention in future work and may suggest that a model with alternative parameter 
constellations could provide a more coherent description. Convergence of the current model with our previous results 
in younger adults 4 ultimately argues for robust drift rate inferences that were independent from the specific model 
choice.  
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Supplementary Figure 4. Drift rate differences do not arise from accuracy ceiling or floor effects. (a) Difficulty 
with selectively distinguishing individual features is a major component of the task, which may contribute to age 
differences in single-target drift rates. While on average, younger adults’ single-target responses were more accurate 
than those of older adults, this differed between features (see Supp. Fig. 2). Excluding the most accurate (‘best’) feature 
for younger adults and the least accurate (‘worst’) feature for older adults matched groups regarding their accuracy in 
the single-target condition. In this scenario, older adults showed more pronounced accuracy decreases under 
uncertainty, relative to younger adults. Data are means +/- SEs and include data from EEG and fMRI sessions (Nyounger 
= 42, Nolder = 53). n.s.: p = 0.13; ***1: p = 2.6e-05; ***2: p = 6.1e-04; ***3: p = 8.2e-04. (b) Drift rate estimates for 
an HDDM model that only included age-matched features (“match” in a). This model indicated retained age 
differences in single-target drift rate and absolute drift changes under uncertainty (right). Older (vs. younger) adults 
showed stronger relative drift rate reductions from the single-target baseline. 
 
Supplementary Note 2 
Drift rate effects for accuracy-matched features. Our analysis indicated that older adults on average showed 
reduced behavioral uncertainty costs. However, these uncertainty costs are thought to arise from attending to a varied 
feature set, whose discrimination also varies between age groups when only a single feature is relevant. To examine 
whether potential ceiling or floor effects in feature-specific accuracy (e.g., due to varying perceptual uncertainty) acts 
as a between-group confound, we sorted features according to their single-target accuracy in each participant, and 
averaged accuracy according to such "preference” within each age group. This revealed that three out of the four 
features elicited comparable single-target accuracy between age groups, whereas only the best feature of younger adults, 
and the worst feature of older adults could not be matched (Supp. Fig. 4a). To test the robustness of unmatched drift 
rate estimates (Fig. 1b), we created HDDM models that excluded the most preferred feature of younger adults, and 
the individually least preferred feature in older adults (i.e., only including “matched” features). Results from this control 
analysis are shown in Supp. Fig. 4b. We observed retained age differences in single-target drift rates, as well as 
uncertainty-related drift rate changes that mirrored our main results. These results indicate that baseline feature 
differences are likely not the principal origin of age and uncertainty drift rate differences. 
 
Supplementary Note 3 
More pronounced relative performance decreases in older adults. Compared with younger adults, older adults’ 
drift rates were lower across levels of target load (Fig. 1b). To test whether drift rates across all set sizes show similar 
proportional age changes, we calculated relative drift rate changes. Arguing against uncertainty-independent age 
differences in drift rate, we observed larger relative drift rate decreases under uncertainty in older as compared with 
younger adults (see Supp. Fig. 4b right for feature-matched HDDM; similar results were obtained in the main model). 
This indicates that despite being smaller in absolute terms, older as compared to younger adults suffered stronger 
relative drift rate losses once uncertainty was introduced. This mirrored larger accuracy decreases in matched features 
once uncertainty was introduced (Supp. Fig. 4a). Taken together, this indicates that uncertain multi-tasks contexts 
present an outsized challenge to older adults’ performance, over and above challenges in single-target specificity 5. For 
our main analyses that target inter-individual relations, we focus on absolute uncertainty-related drift rate changes due 
to their relation to neural uncertainty adjustment in prior work (Kosciessa et al., 2021), and the computational 
interpretability of absolute drift rates at each target load. 
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Supplementary Figure 5. Exploration of feature-specific accuracy and drift rate variation. (a) Single-target 
accuracy and drift rate for features that are sorted by decreasing single-target accuracy and drift rate. Yellow dots 
indicate the conditions selected for matching in b. (b) Matching based on single-target accuracies and drift rates 
indicates stronger relative performance decreases with uncertainty in older compared with adults. (c) A median split of 
fMRI Brainscores (trichotomized split | full lines: largest BOLD mod.; dashed lines: smallest BOLD mod.; cf. Supp. 
Fig. 17) indicates that larger neural modulation is inter-individually and group-wise linked to higher single-trial drift 
rates (but not differential accuracy; see also Supp. Fig. 4), independent of feature preference. This suggests that neural 
modulation is not primarily constrained due to varying choice difficulty for individual features, but rather by a global 
operation (e.g., cue-guided selectivity, distractor suppression, etc.) that is shared across features. Means +- SEMs 
(Nyounger = 42, Nolder = 53). 
 
Supplementary Note 4 
Exploration of feature-specific accuracy and drift rate variation. We performed exploratory analyses to further 
characterize behavior (accuracy, rt) and drift rate as a function of probed feature. To this end, we estimated all canonical 
HDDM parameters also for variations in the feature that has been probed. We caution that the large parameter space 
may lead to some convergence issues, which is why the main model does not estimate parameters for separate features. 
We sorted single-target accuracy and drift rate in descending order (Supp. Fig. 5a). Like accuracy, selecting features 
such that single-target drift rates are matching indicates larger uncertainty-induced drift rate decreases (Supp. Fig. 4b, 
see also Supplementary Note 3). However, it is debatable whether this is a reasonable comparison particularly for drift 
rates:  an analysis that matches “selective” performance (i.e., drift rates under low uncertainty) between age groups also 
removes key age differences in neural engagement. Namely, we observed a closer link between within-group fMRI 
modulation and single-target drift rates, but not accuracy (Supp. Fig. 4c, see also Supp. Fig. 3). This was independent 
of which feature was probed, and thus unrelated to varying perceptual uncertainty between features. This reinforces 
the notion that perceptual uncertainty per se (which in psychophysics is sometimes titrated to comparable accuracy 
levels) is not the principal predictor of the constrained neural uncertainty modulation either within or between age 
groups.  



 7 

 

 
 

Supplementary Figure 6. Centroparietal Positive Potential (CPP) as a signature of domain-general evidence 
integration. (a) Modulation of CPP as a neural signature of evidence accumulation (mean ± within-subject SEM). 
The integration slope of the response-locked CPP decreases with increasing uncertainty. Traces are mean ± within-
subject SEM (Nyounger = 47, Nolder = 53). Insets show CPP slope estimates from −250 to −50 ms relative to response 
execution. (b) Age comparison of CPP integration slopes (yellow background) and CPP integration thresholds (grey 
backgrounds). (c) CPP estimates of evidence integration converge with behavioral drift rate estimates at the 
interindividual level, both w.r.t the single-target condition (t(93) = 4.86, p < 0.001, r = 0.45, 95%CI = [0.27,0.59]; age-
partialed: t(92) = 2.70, p = 0.01 r = 0.27, 95%CI = [0.08,0.45) and linear effects of target number (t(93) = 5.72, p < 
0.001, r = 0.51, 95%CI = [0.34,0.64]; age-partialed: t(92) = 3.49, p < 0.001, r = 0.34, 95%CI = [0.14,0.5]). Squares: 
younger adults; diamonds: older adults.  



 8 

 

 
 

Supplementary Figure 7. Contralateral beta power as a signature of motor-specific response 
preparation. (a) Pre-response desynchronization of contralateral mu-beta power shallow with increasing 
number of targets (Nyounger = 47, Nolder = 53). Traces show means +/- within-subject SEM. (b) Linear 
slope estimates, estimated via linear regression from -250 ms to -50 ms, relative to response. Data are 
within-subject centered for visualization. Statistics refer to paired t-tests of linear slopes against zero. (c, 
d) Age comparison of linear modulation of beta slopes (c) and integration thresholds (d) by target load. 
Statistics refer to unpaired t-tests. 

 
Supplementary Note 5 
Motor-specific response preparation. In addition to the domain-general CPP, we also investigated motor-specific 
contralateral beta power (Supp. Fig. 7a). Extending results from behavioral modeling, and CPP integration slopes, we 
observed a shallowing of pre-response beta power build-up, suggesting decreases in response preparation (Supp. Fig. 
7b). However, such shallowing was not statistically different between age groups (Supp. Fig. 7b), thus deviating from 
the age x load interaction that we observed for the remaining integration signatures. Furthermore, linear changes in 
beta slope as a function of target load were neither associated with linear drift changes (t(93) = -0.29, p = 0.77, r = -
0.03, 95%CI = [-0.23,0.17]) nor CPP slopes (t(93) = -1.07, p = 0.29, r = -0.11, 95%CI = [-0.3,0.09]) across age groups. 
The parameters were also not directly related in the single-target condition (drift rates: t(93) = 1.76, p = 0.07, r = 0.18, 
95%CI = [-0.02,0.37]; CPP slopes: t(93) = -0.58, p = 0.55, r = -0.06, 95%CI = [-0.26,0.14]). Motor-specific response 
preparation thus appears to partially dissociate from effector-unspecific evidence integration at the individual level. 



 9 

 
 
Supplementary Figure 8. Deconvolution analyses for response-locked potentials. (a) Average peri-response 
topographies from -250 ms to 100 ms before (left, cf. Fig. 1c) and after (right) probe onset deconvolution. Black stars 
indicate sensors selected for parietal/CPP potentials, whereas white stars indicate central channels selected for motor-
related potentials. (b) Response-related potentials before (left) and after (right) probe onset deconvolution. Means +- 
within-subject SEM (Nyounger = 47, Nolder = 53). Parietal (top) and central (bottom) potentials correspond to the 
channels indicated in a. (c) Uncertainty modulation (linear) of pre-response slopes (deconvolved data; cf. Fig. 1c) by 
age group. Pre-response slopes were estimated during the time windows indicated by the shaded areas in b. 
 
Supplementary Note 6 
Deconvolution of probe-related from response-locked ERP potentials. Recent work proposes that pre-response CPP 
ramping could be sufficiently explained by a probe-related appraisal process – rather than choice – that is jittered in time due 
to response speed variations 6. To explore this here, we conducted deconvolution analyses using the unfold toolbox 7 
implemented in MATLAB. By providing event-specific regression formulas, this approach can disentangle temporally 
overlapping ERP responses. We jointly modelled probe onset and response regressors using FIR basis functions, time 
expanded +/- 1 seconds around the respective events 6. Data were 8 Hz lowpass-filtered, no baseline correction was applied, 
amplitudes > 250 µV were removed. Consistent with the CPP reflecting a stimulus-related P300 potential 8,9, posterior 
topographies changed following removal of onset-related activity (Supp. Fig. 8). However, parieto-occipital potentials more 
exhibited residual ramping that peaked slightly prior to response onset, in line with a choice-related process. Age differences 
in the uncertainty modulation of residual slopes (linear fits: -500 to -50 ms) resembled those in the main analysis (cf. Fig. 1c), 
albeit with no uncertainty-related slope adjustment observed in older adults. Analogous to beta power dynamics (Supp. Fig. 
7), a central motor-related potential indicated that uncertainty shallowed slopes of the deconvolved motor negativity (linear 
fits: -500 to -0 ms). 

While onset deconvolution captures the impact of probe processing on response-locked potentials, it provides 
inconclusive information regarding an accumulation-to-bound decision process. Differences in evidence integration rate can 
emerge rapidly after probe onset, persist until response see e.g., 9,10, and produce differential RT distributions 9. In the face 
of temporal covariance, considering unique response-locked variance would remove substantial “choice” signal of interest. 
In the face of this ambiguity regarding the latent processes contributing to observed potentials, multiple observations support 
a choice-related account here: First, CPP slopes inter-individually mirror model-based (HDDM) estimates of evidence 
integration (Supp. Fig. 6c). Second, similar ramping dynamics are observed in the motor system (Supplementary Note 5, 
central ERP above), where probe impact is more limited. Notably, contralateral beta power reflects relative biases towards 
one hemispheric response over the other, thereby fulfilling strict definitions of a choice-specific signature 6. Effector-specific 
signatures 11 therefore lend further credence to the notion that our neural signatures capture evolving decision processes.   
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Supplementary Figure 9. CPP slope during the Stroop task. (a) Response-aligned CPP traces split 
by condition and age group. Time series were smoothed with 60 ms windows for visualization, but not 
for slope fitting. Linear slopes were estimated during the interval of -600 to -100 ms prior to indicated 
SOTs, marked by the red line. (a) CPP integration slopes were reduced in magnitude in the mismatch 
condition in both age groups (Nyounger = 47, Nolder = 51). (b, c) Interference effects on CPP slopes were 
more pronounced in older compared with younger adults. (d) The magnitude of individual interference 
effects was similarly reflected in RTs and CPP slopes: individuals with more pronounced RT slowing 
also exhibited larger CPP slope reductions (t(91) = -4.54,  p < 0.001, r = -0.43, 95%CI = [-0.58,-0.25]; 
partial-correlation accounting for age: t(90) = -3.22, p < 0.001, r = -0.32, 95%CI = [-0.49,-0.12]). 
Squares: younger adults; diamonds: older adults.
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Supplementary Figure 10. Load modulation for cognitive control (a) and excitability 
signatures (b). Statistics refer to paired t-tests of linear slopes against zero (Nyounger = 47, Nolder = 
53). In line with the different excitability indices capturing a shared latent characteristic, the magnitude 
of uncertainty modulation was inter-individually related among the three parameters (alpha-1/f: r = 
0.44, p = 9.8e-06; 1/f-SampEn: r = 0.6, p = 1.1e-10; SampEn-alpha: r = 0.24, p = .02). (c) Sample 
entropy input spectrum highlighting the exclusion of alpha-range signal content.  
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Supplementary Figure 11. Pupil size modulation in response to cue onset. (a) Temporal derivatives of pupil 
diameter linearly decreased with increasing number of feature cues. Data are means +- within-subject SEM across age 
groups (Nyounger = 47, Nolder = 53). The black line indicates significant loadings of a Task PLS LV1 (permuted p ~ 0). 
The inset shows grand average pupil dynamics with shaded cue and stimulus phases. (b) Relative pupil constriction 
upon presentation of more cues (= increasing luminance) did not differ between age groups, whereas younger adults 
showed larger relative pupil size for (luminance-matched) stimuli in the face of more uncertain feature relevance than 
older adults. 
 
Supplementary Note 7 
Stimulus-related pupil modulation does not result from cue-related luminance differences. The task cue is 
composed of one to four bright exemplars. It thereby linearly increases in luminance alongside our uncertainty 
manipulation. To test whether luminance changes in the cueing phase affected stimulus-related pupil modulation, we 
probed pupil dynamics that were time-locked to cue onset (Supp. Fig. 11a). Upon cue onset pupil size linearly 
decreased, in line with increasing luminance. These changes were however constrained to the cue presentation interval. 
Uncertainty-related pupil size changes upon stimulus presentation thus cannot be attributed to luminance differences 
in the preceding cue. Complementing the perspective on the 1st derivative of pupil dynamics, we also probed relative 
pupil size changes (calculated as % change relative to a condition-specific 500 ms baseline prior to cue onset: data-
baseline)/baseline). Changes between max. and min. target load (= maximal cue luminance differences) are shown by age 
group in Supp. Fig. 11. Age groups did not significantly differ in relative pupil constriction upon cue presentation (~ 
luminance-effect; indicated by a cluster-based permutation test), but younger adults showed relatively increased pupil 
size in the face of more uncertain feature relevance following the onset of (luminance-matched) stimuli. These results 
jointly indicate that stimulus-related age differences in uncertainty-related pupil size modulation (shown in Fig. 4b) are 
not merely a spill-over of differential luminance sensitivity.   
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Supplementary Figure 12. Task PLS of sample entropy and aperiodic slopes across all channels. Brainscores 
for younger adults (N=47) are shown on the left side, with data for older adults shown to the right (N=53). Inset 
estimates refer to fixed linear effects models. Topographies of bootstrap ratios are unthresholded. 
 
Supplementary Note 8 
Exploratory whole-brain task PLS of aperiodic dynamics. In the main analysis, we restricted the PLS to posterior 
channels with the aim to predominantly characterize signals stemming from parietal and visual cortex. To explore 
whether this analysis missed uncertainty-related changes in aperiodic dynamics in other regions, we performed an 
additional task PLS analysis that included all channels. This task PLS averaged sample entropy across the final 2.5s of 
stimulus presentation. To normalize relative contributions of the two signatures to the PLS, we z-transformed values 
of each signature across target load levels prior to including them in the model. This joint PLS resulted in two 
significant latent variables (Supp. Fig. 12). The first latent variable (permuted p = 0.001) indicated uncertainty-related 
increases in sample entropy and shallowing of aperiodic slopes in younger, but not older adults. Regional contributions 
were predominantly observed in posterior sensors. This latent variable thus captures the observations in the main 
analysis. The second latent variable (permuted p = 0.021) was instead marked by quadratic changes (younger adults: p = 
1.5e-08; older adults: p = 0.03; linear mixed effects model with fixed and random quadratic effects) as a function of 
target load. Estimates initially decreased, followed by an increase with load towards higher target load, predominantly 
at mediofrontal channels.   
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Supplementary Figure 13. Pre-stimulus alpha power. Uncertainty similarly increases pre-stimulus alpha power 
in younger (N=47) and older adults (N=53) but does not relate to individual drift rate adjustments. Light grey squares 
indicate younger adults, dark grey diamonds correspond to older adults. 

 
Supplementary Note 9 
Pre-stimulus alpha power. Evidence on age-related changes in pre-stimulus alpha power are mixed. Early studies 
suggest that pre-stimulus alpha synchronization (or lateralization) in the context of attentional cueing is observed 
exclusively for younger, but not older adults 12,13. In contrast, 14 indicated similar pre-stimulus lateralization between 
age groups, whereas they noted age differences in alpha modulation during working memory retention. While our task 
design does not allow us to assess the lateralization of alpha power, our results indicate that pre-stimulus alpha power 
increases similarly alongside uncertainty in both age groups, but with no apparent relation to subsequent (delayed) task 
performance (Supp. Fig. 13).  
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Supplementary Figure 14. Steady-state visual evoked potential (SSVEP). (a) Both age groups (Nyounger = 47, 
Nolder = 53) exhibited robust SSVEPs. Time-resolved, spectrally normalized, SSVEP power, averaged across occipital 
channels (O1, Oz, O2), indicates clear SSVEP increases specifically during stimulus presentation. Data are presented 
as mean values +/- within-subject SEM. Topography insets show stimulus-evoked SSVEP contrast minus baseline. 
(b) However, estimates from occipital EEG channels (O1, Oz, O2) did not indicate age differences in single-target 
SSVEP magnitude, a main effect of load in either group, or differences in the strength of linear modulation (~ age*load 
interaction). 
 
Supplementary Note 10 
SSVEP magnitude. SSVEP magnitude has been suggested as a signature of encoded sensory information that is 
enhanced by attention 15-18 and indicates fluctuations in early visual cortex excitability 19. However, despite a clear 
SSVEP signature of comparable magnitude in both younger and older adults, we did not observe significant effects of 
target uncertainty on SSVEP magnitude in either age group (Supp. Fig. 14). Given that the SSVEP frequency was 
shared across different features, we could not investigate feature selection via SSVEPs as is commonly the case in 
attention studies. Studies with feature-specific SSVEPs, suggest that younger adults’ SSVEP magnitude differentiates 
between attended and unattended features, whereas no robust differentiation is observed in older adults, pointing to 
deficits in attentional filtering 17,18.  
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Supplementary Figure 15. Main effects of target load on BOLD magnitude. A task partial least squares (PLS) 
analysis indicated three significant latent variables (loadings shown in panels a-c) that were sensitive to changes in 
target number. (d) Statistics refer to paired t-tests of linear slopes against zero (Nyounger = 42, Nolder = 53). 
 
Supplementary Note 11 
Main effects of target load on BOLD magnitude across the adult lifespan. We performed a whole-brain task 
PLS to assess potential main effects of target load on BOLD magnitude. In brief, we observed a similar first latent 
variable (permuted p < 0.001) to that reported in younger adults 4, highlighting uncertainty-related increases dominantly 
in cortical areas encompassing the frontoparietal and the midcingulo-insular network, as well as in the thalamus (see 
detailed results of this analysis in Supp. Fig. 15 and Tables S2-4). The task PLS indicated two further robust LVs. LV2 
(permuted p < 0.001) captured a non-linear pattern in younger adults and linear changes under uncertainty in older 
adults. Regional contributors partly overlapped with the initial LV (Table S3). Finally, LV3 (permuted p < 0.001) captured 
nonlinear changes (initial increases in engagement followed by disengagement) in both age groups in a set of regions 
encompassing positive loadings in frontoparietal components of the executive control network, and negative loadings 
in temporal-occipital cortex (Table S4).  
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Supplementary Figure 16. Post-hoc Brainscore relations. (a) Relations before (left) and after controlling for 
categorical age (right). Beyond the a priori signatures included in the behavioral PLS model, post-hoc exploration 
indicated that individuals with more pronounced BOLD uncertainty modulation also had larger single-target drift rates, 
and lower single-target boundary separation (“boundary thresholds”), as well as larger increases in the latter as a 
function of uncertainty, also after controlling for categorical age (see right). In addition to the magnitude of uncertainty-
related drift rate modulation, CPP slope modulation was similarly related to Brainscores. Plots indicate Pearson 

correlation coefficients +- 95%CI after accounting for age covariation. (b) Brainscores from behavioral PLS as a 
function of gender (Nmale= 41, Nfemale = 54).  
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Supplementary Figure 17. BOLD modulation effects are robust to accuracy differences 
within (a) and between age groups (b). (a) Younger and older individuals with larger BOLD 
uncertainty modulation (see LV1 in Supp. Fig. 15) achieve higher drift rates across uncertainty levels 
at comparable accuracy levels. Data show upper (full lines) and lower (broken lines) groups of a 
trichotomized split of accuracy and drift rate data based on the magnitude of uncertainty change 
(234 vs. 1) in the 1st LV of the task PLS (closely mirroring LV1 of the behavioral PLS; Nhigh=31, 
Nlow=33). Insets illustrate comparable within-group splits (split performed within-group; Nyounger-

high=14, Nyounger-low=14, Nolder-high=17, Nolder-low=19). Data are means +- SEs. (b) Age x uncertainty 
interaction in mediodorsal thalamus for accuracy-matched features. This analysis excluded trials in 
which the best (YA) or worst (OA) features were probed to compare data with group-matched 
single-target accuracy (see Supplementary Note 2). A linear mixed effects model indicated a 
retained group x target load interaction for data averaged in the time window of interest (yellow 
shading; t(364) = -2.051, p = 0.041, β = -0.76, SE = 0.37, 95%CI = [-1.48, -0.03]). Data are means 
+- SEs.  
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Supplementary Figure 18. Reverse inference of uncertainty, working memory, and attention. (a-c) Overlap 
between neuroimaging of task and state uncertainty. (a) Spatial loadings of behavioral PLS, reproduced from Fig. 6a. 
(b) Neuroimaging results of a state entropy manipulation with low working memory demands [reanalyzed from Fig. 
1-3a in 20; https://neurovault.org/collections/4872/]. Data range is [0 to -/+ 6]. (c)  Person correlation between spatial 
t-values and spatial loadings indicate convergent spatial activation patterns between uncertainty manipulations 
(N=7299 voxels). (d) Overlap and uniqueness of uncertainty and working memory activation. Neurosynth.org 
activations (uniformity tests: the degree to which each voxel is consistently activated in studies that use a given term; 
threshold: FDR = 0.01; binarization threshold: 1) for “working memory” and “uncertainty”, decomposed into shared 
and unique patterns. Both the current task uncertainty modulation and state uncertainty more closely resemble meta-
analytic loadings of uncertainty than working memory or attention patterns. 
 
Supplementary Note 12 
Relation of fMRI modulation to uncertainty, working memory, and attention. Our uncertainty manipulation 
demands multifaceted adjustments, including to attentional selection, extra-dimensional set switching and working 
memory maintenance. Can our results be directly linked to a single cognitive concept? We performed reverse inference 
analyses to clarify this. In line with our results capturing variations in induced uncertainty, neuroimaging results 
converged with a prior assessment of model-based uncertainty (about the reward probability of eight options in a 
Bayesian ideal observer model 20; Supp. Fig. 18a-c). In this prior operationalization, uncertainty varies according to 
varying probabilistic beliefs across features but does not directly scale with working memory load. Our results converge 
with raw loadings from this prior assessment (incl. on thalamic loadings not originally highlighted). When directly 
contrasting task uncertainty activation to meta-analytic activations to attention or working memory studies (Supp. Fig. 
18d), neuroimaging results were more consistent with meta-analytic maps of uncertainty. This was also true when 
considering % overlap between binary empirical activation (+/-1.96 threshold) and neurosynth masks: task uncertainty: 
uncertainty: 53% | wm: 47% | attention: 41%; state uncertainty: uncertainty: 78% | wm: 64%| attention: 53%. Taken 
together, these results indicate that our results converge with prior work on uncertainty, while also indicating overlap 
with multifaceted executive adjustment in response to variable uncertainty.  
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Supplementary Note 13 
Extended discussion: uncertainty and working memory capacity. Can decreasing working memory (WM) 
capacity with older age 21 account for dampened uncertainty adjustment? Our task consists of three stages, each of 
which requires WM representations. First, from cue to probe presentation, participants need to maintain 1 to 4 targets 
in the active task set. We aimed to reduce WM load during this phase by maintaining an identical cue set within eight-
trial blocks, and re-cueing this set at the onset of each trial. Cue-related EEG responses indicate similar alpha power 
modulation for younger and older adults (Supp. Fig. 13), suggesting comparable processing of the cued feature set and 
alertness. Second, during stimulus presentation, the MAAT requires participants to concurrently sample up to four 
visual features and retain WM traces of feature-specific information for the upcoming probe-dependent decision phase. 
Third, once a probe retro-cues the decision-relevant feature, feature-specific evidence must be selected amongst 
competing WM representations 22. Probe processing (and behaviour) can be affected by how many features could be 
encoded given individual WM capacity across latter task stages. However, behavioural (and neural) uncertainty effects 
(and age differences therein) were prominent also at low target loads, arguing against a major role of WM capacity 
constraints. Rather, the pattern of effects supports age differences in executive control over WM contents, as also 
observed in N-back tasks 23. A capacity-based explanation is also less intuitive for uncertainty-induced changes at the 
onset of stimulus presentation (e.g., increased pupil diameter, EEG-based power). We argue that WM fidelity is more 
important in this context than WM capacity per se 24. In line with this notion, our decoding analysis indicates an increase 
in information about multiple features at the expense of single-target fidelity. Operationalizations of task uncertainty 
via cue conflict (as operationalized here; see also 25,26) are also used to probe WM fidelity under varying target 
predictability. Studies of the latter indicate that uncertainty reduces the precision of (probabilistic) WM representations 
27,28, here theoretically for each feature (the feature-specific states shown in Fig. 7). Neuroimaging further supports a 
close overlap between uncertainty and WM load manipulations (see also Supp. Fig. 18): sensitivity to either relies on a 
“multiple demand network” 29. Notably, mediodorsal thalamic engagement has been theorized to be maximal when 
multiple demands (incl. executive control operations such as WM updating, inhibition, and shifting) converge 30. Our 
results therefore tacitly support the view that older adults are particularly challenged in dynamic WM management 31, 
and related parallel resource allocation 5, whereas WM storage capacity shows only modest age-related declines for 
review see 21. 
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Table S1: Statistics for within age-group effects. Effects were assessed via two-sided paired t-tests against zero. 
  

Dependent variable Fig. df t-value p-value Cohen’s d 
Drift rate (single-target) – younger 1b 41 26.41 2.3e-27 4.07 
Drift rate (single-target) – older 1b 52 22.06 4.6e-28 3.03 
CPP (single-target) – younger 1b 41 8.62 9.5e-11 1.33 
CPP (single-target) – older 1b 52 7.92 1.7e-10 1.09 
Drift rate (linear mod.) – younger 1b 41 -17.07 3.1e-20 -2.63 
Drift rate (linear mod.) – older 1b 52 -17.45 2.2e-23 -2.4 
CPP (linear mod.) – younger 1b 41 -7.37 4.9e-09 -1.14 
CPP (linear mod.) – older 1b 52 -5.04 5.9e-06 -0.69 
Stroop interference – younger 3b 47 10.01 3.1e-13 1.44 
Stroop interference – older 3b 52 16.02 9.3e-22 2.2 
Theta power (linear mod.) – younger 4a 41 6.85 2.6e-08 1.06 
Theta power (linear mod.) – older 4a 52 2.3 2.6e-02 0.32 
Pupil diameter (linear mod.) – younger 4b 41 7.34 5.6e-09 1.13 
Pupil diameter (linear mod.) – older 4b 52 7.25 1.9e-09 1 
Alpha power (linear mod.) – younger 5a 41 6.05 3.7e-07 0.93 
Alpha power (linear mod.) – older 5a 52 -0.75 0.46 -0.1 
Sample Entropy (linear mod.) – younger 5b 41 2.21 0.033 0.34 
Sample Entropy (linear mod.) – older 5b 52 0.23 0.82 0.03 
1/f slope (linear mod.) – younger 5c 41 4.67 3.3e-05 0.72 
1/f slope (linear mod.) – older 5c 52 0.14 0.89 0.02 
fMRI Brainscore – younger 6b 41 11.49 2.1e-14 1.77 
fMRI Brainscore – older 6b 52 7.47 8.8e-10 1.03 
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Table S2: PLS model peak activations, bootstrap ratios, and cluster sizes for task PLS LV1. 
 

  MNI Coordinates   
Region Hem X Y Z BSR #Voxels 
IFG (p. Opercularis) L -45 9 27 15.11 3164 
Inferior Parietal Lobule L -42 -48 45 14.3 3451 
Insula Lobe R 30 21 -3 11.4 170 
Inferior Temporal Gyrus L -54 -66 -12 11.34 880 
Thalamus L -6 -30 -3 10.76 1064 
Superior Frontal Gyrus R 27 -3 54 10.21 903 
Cerebelum (Crus 1) R 6 -81 -24 8.5 276 
Cerebelum (VI) R 30 -66 -30 7.83 129 
Inferior Temporal Gyrus R 54 -63 -12 6.19 297 
Area Fo3 L -27 39 -21 4.68 45 
Calcarine Gyrus L -15 -78 6 4.28 29 
Middle Frontal Gyrus R 27 51 3 4.25 31 
Superior Medial Gyrus R 12 48 33 -12.32 2317 
Area hOc3d [V3d] L -24 -99 12 -11.64 6542 
MCC R 3 -15 36 -11.23 889 
Area lg1 R 30 -21 3 -11.14 4238 
Postcentral Gyrus R 21 -36 63 -5.86 121 
Postcentral Gyrus L -39 -21 36 -5.8 43 
Middle Frontal Gyrus L -33 24 39 -5.32 32 
Angular Gyrus L -48 -63 27 -4.81 59 
Middle Frontal Gyrus R 45 15 48 -3.95 55 
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Table S3: PLS model peak activations, bootstrap ratios, and cluster sizes for task PLS LV2. 
 

  MNI Coordinates   
Region Hem X Y Z BSR #Voxels 
Area hOc3d [V3d] L -24 -99 12 9.16 1974 
Insula Lobe R 42 15 -3 6.66 136 
Middle Orbital Gyrus R 30 54 -15 5.31 143 
Superior Frontal Gyrus R 21 12 60 5.01 911 
Middle Frontal Gyrus R 33 48 12 4.91 119 
Angular Gyrus R 57 -51 27 4.76 280 
Inferior Temporal Gyrus R 51 -3 -39 4.47 50 
Inferior Temporal Gyrus R 63 -27 -30 4.4 28 
Superior Occipital Gyrus R 21 -63 42 4.05 69 
Rolandic Operculum L -57 6 3 3.79 27 
Hippocampus L -27 -21 -18 -7.36 316 
Calcarine Gyrus L -12 -60 12 -6.5 244 
Rectal Gyrus L -9 27 -15 -6.24 440 
Middle Temporal Gyrus L -66 -57 -9 -6.12 256 
Middle Occipital Gyrus L -42 -81 39 -6.08 190 
IFG (p. Orbitalis) L -36 33 -18 -5.97 94 
Precuneus R 9 -54 9 -5.67 131 
ParaHippocampal Gyrus R 21 -21 -18 -4.83 39 
IFG (p. Orbitalis) R 24 27 -15 -4.67 28 
Middle Temporal Gyrus R 54 -6 -15 -4.56 51 
MCC L -12 -42 36 -4.44 76 
Middle Occipital Gyrus R 45 -78 27 -4.34 34 
Middle Frontal Gyrus L -27 30 42 -4.27 153 
Cerebelum (Crus 2) R 3 -87 -33 -4.14 28 
Middle Temporal Gyrus L -51 -3 -24 -3.94 53 
Superior Frontal Gyrus L -24 60 3 -3.78 27 
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Table S4: PLS model peak activations, bootstrap ratios, and cluster sizes for task PLS LV3. 
 

  MNI Coordinates   
Region Hem X Y Z BSR #Voxels 
Angular Gyrus R 51 -57 36 8.05 604 
Middle Frontal Gyrus R 36 21 36 6.87 660 
Inferior Parietal Lobule L -54 -51 42 6.27 469 
Precuneus L -9 -66 45 6.13 474 
Middle Frontal Gyrus L -39 24 33 6.05 726 
Middle Frontal Gyrus R 27 57 0 5.97 287 
Middle Temporal Gyrus R 60 -33 -12 5.46 184 
Cerebelum (Crus 1) R 9 -81 -27 5.29 62 
Putamen L -27 6 -6 4.82 74 
Putamen R 24 0 6 4.38 67 
Inferior Temporal Gyrus L -66 -42 -21 4.16 49 
Cerebelum (Crus 2) L -15 -87 -30 3.96 32 
Cerebelum (Crus 2) R 33 -72 -45 3.8 53 
Inferior Temporal Gyrus R 48 -69 -9 -10.33 1706 
Inferior Occipital Gyrus L -45 -75 -6 -9.9 1022 
Postcentral Gyrus L -57 -6 39 -5.18 232 
Postcentral Gyrus L -51 -33 57 -4.5 43 
ACC R 12 42 9 -4.41 191 
Superior Parietal Lobule L -24 -63 48 -4.4 36 
Posterior-Medial Frontal L -6 3 57 -4.4 65 
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Table S5: PLS model peak activations, bootstrap ratios, and cluster sizes for behavioral PLS LV1. 
 

  MNI Coordinates   
Region Hem X Y Z BSR #Voxels 
Thalamus L -6 -15 12 8.57 573 
Posterior-Medial Frontal L 3 12 45 8.13 555 
Precentral Gyrus L -42 0 30 7.51 931 
Superior Frontal Gyrus R 27 -3 54 6.91 222 
Inferior Occipital Gyrus L -42 -72 -6 6.13 208 
Middle Temporal Gyrus L -51 -51 21 6.03 90 
Putamen R 30 18 0 5.75 94 
Middle Frontal Gyrus R 36 24 21 5.74 220 
Middle Temporal Gyrus L -57 -33 -6 5.26 35 
Inferior Parietal Lobule R 30 -54 48 5.14 323 
Inferior Parietal Lobule L -36 -57 45 4.75 315 
Area hOc1 [V1] R 9 -99 6 4.7 82 
Inferior Temporal Gyrus R 45 -63 -12 4.51 27 
Hippocampus L -27 -18 -21 -8.92 873 
MCC L -12 -36 48 -6.05 359 
Putamen R 30 -3 9 -5.79 879 
Superior Frontal Gyrus R 18 54 30 -5.73 443 
Middle Frontal Gyrus L -21 30 54 -5.45 67 
Superior Medial Gyrus R 12 42 48 -5.28 138 
IFG (p. Orbitalis) R 36 30 -21 -5.2 55 
ParaHippocampal Gyrus R 21 -18 -18 -5.13 49 
Middle Temporal Gyrus L -51 3 -33 -4.28 29 
Inferior Frontal Gyrus L -33 36 -21 -4.17 26 
Rectal Gyrus L -9 24 -12 -4.15 73 
Inferior Temporal Gyrus L -57 -24 -27 -4.03 32 
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